Двойной радикал как решать

Преобразование двойных радикалов

Решаем уравнение вида $ \sqrt> = e, a \neq 0, b \neq 0, c \neq 0$.

Шаг 1. Если $e \ge 0$, возвести в квадрат левую и правую части.

Если $e \lt 0$, решений нет, $x \in \varnothing$, перейти на шаг 5.

Шаг 2. $ax+b \sqrt = e^2 \Rightarrow \sqrt = \frac$

Шаг 3. Возвести в квадрат левую и правую части

с условием, что правая часть неотрицательна:

Шаг 4. Решить полученное квадратное уравнение (см. главу 4 данного справочника)

и проверить для корней условие $\frac\ge 0$.

Шаг 5. Конец работы.

Преобразование выражений вида $ \sqrt> $

Справедлива следующая формула:

Примеры

Пример 1. Решите уравнения:

Возводим в квадрат: $1+\sqrt+\sqrt = 4 \Rightarrow \sqrt> =3$

Возводим в квадрат: $2+\sqrt = 9 \Rightarrow \sqrt = 7$

Возводим в квадрат: x = 49

Возводим в квадрат: $x+2\sqrt = 1 ⟹ 2\sqrt = 1-x$

Замечаем, что по определению арифметического корня:

$$ x-1 \ge 0 \\ 1-x \ge 0 \end \right.> \Rightarrow x \ge 1 \\ x \le 1 \end \right.> \Rightarrow x = 1 $$

Единственное возможное решение x=1. Подставляем: $ \sqrt> ≡ 1$

Пример 2. Вычислите:

Исходное выражение: $A = \pm \sqrt$.

Очевидно, что $\sqrt> \lt \sqrt>$ и $A \lt 0$. Поэтому $A = — \sqrt$.

Используем формулу преобразования двойных радикалов.

$$A = 9, B = 17 \Rightarrow C = A^2-B = 81-17 = 64 \Rightarrow \sqrt = 8$$

Ответ: $- \sqrt$

$$ A \gt 0: A = \sqrt = 2 $$

Подставляем: $ \frac = \frac$

Пример 3. Используя формулу преобразования двойных радикалов, упростите выражение:

$$ A = 2, B = 3 \Rightarrow C = A^2-B = 4-3 = 1 \Rightarrow \sqrt = 1 $$

$$ A = 7, B = 24 \Rightarrow C = A^2-B = 49-24 = 25 \Rightarrow \sqrt = 5 $$

$$ A = 11, B = 112 \Rightarrow C = A^2-B = 121-112 = 9 \Rightarrow \sqrt = 3 $$

$$ A = 9, B = 80 \Rightarrow C = A^2-B = 81-80 = 1 \Rightarrow \sqrt = 1 $$

$$ A = a, B = a^2-b^2 \Rightarrow C = A^2-B = a^2-(a^2-b^2 ) = b^2 \Rightarrow \sqrt = b $$

Пример 4. Докажите равенство индийского математика Бхаскара (1114-1185):

Возведём в квадрат левую и правую части равенства. Для квадрата суммы трёх выражений используем формулу из §26 справочника для 7 класса.

Выражения слева и справа тождественно равны.

Что и требовалось доказать.

Пример 5*. Упростите выражение (задача Ж.Бертрана (1822-1900)):

Используем результат из примера 3(а):

$$ (\sqrt+1)^2 = 3+2\sqrt+1 = 4+2\sqrt = 2(2+\sqrt) \Rightarrow 2+\sqrt = \frac+1)^2> $$

20. Преобразование двойных радикалов

Выражение , входящее в эту формулу, имеет вид

,

где а, b, с — некоторые рациональные числа. Выражение такого вида называют двойным радикалом.

В преобразованиях выражений, содержащих двойные радикалы, стремятся освободиться от внешнего радикала. Это нетрудно сделать, когда выражение, стоящее под знаком радикала, можно представить в виде квадрата суммы или квадрата разности.

Пример 1. Освободимся от внешнего радикала в выражении .

Решение: Попытаемся представить выражение 41 — 12 в виде квадрата разности двух выражений. Для этого 12 будем рассматривать как удвоенное произведение двух выражений, а 41 как сумму их квадратов. Выражение 12 можно представить, например, как 2 • 6 • или как 2 • 3 • 2. Проверка убеждает нас, что именно в первом случае сумма квадратов множителей 6 и равна 41. Значит,

Пример 2. Освободимся от внешнего радикала в выражении .

Покажем, как можно решить эту задачу, используя метод неопределённых коэффициентов.

Решение: Пусть = а + b, где а и b — некоторые числа. Тогда (а + b) 2 = 61 + 28 и а + b ≥ 0. Значит,

Выпишем все пары целых чисел (а; b), для которых аb = 14:

Из этих пар выберем те, которые удовлетворяют условиям

Нетрудно убедиться, что такая пара единственная — это пара (7; 2). Значит,

В тех случаях, когда a ≥ 0, b ≥ 0 и разность а 2 — b равна квадрату рационального числа, освободиться от внешнего радикала в выражении можно с помощью формулы двойного радикала:

В правой части этой формулы записано неотрицательное число. Покажем, что его квадрат равен а ±

Пример 3. Освободимся от внешнего радикала в выражении .

Решение: По формуле двойного радикала имеем

Освобождение от внешнего радикала используется в преобразованиях выражений с переменными, содержащих двойные радикалы.

Пример 4. Упростим выражение

Решение: Представим в двойном радикале подкоренное выражение в виде

Урок алгебры по теме "Двойной радикал". 8-й класс

До восьмого класса мы осуществляли над числами пять арифметических действий: сложение, вычитание, умножение, деление и возведение в степень, причем при вычислениях, мы активно использовали различные свойства этих операций.

В курсе алгебры восьмого класса была введена новая операция – извлечение квадратного корня из неотрицательного числа. Выражения, содержащие операцию извлечения квадратного корня, называются иррациональными.

В большом толковом словаре можно найти следующее определение иррациональности:

С философской точки зрения иррациональность – недоступность разуму, то, что не может быть постигнуто разумом, что явно не подчиняется законам логики, и не может быть выражено в логических понятиях, что оценивается как «сверхразумное». С математической точки зрения иррациональность – несоизмеримость с единицей; не является ни целой, ни дробной величиной.

Действительно ли понятие иррациональности – это что-то «уму не постижимое, несоизмеримое, немыслимое»?

На этот вопрос мы постараемся сегодня найти ответ.

3 этап работы. Повторение ранее изученного материала

1) Свойства квадратного корня

Чтобы успешно выполнять преобразования выражений, содержащих операцию извлечения квадратного корня, нужно знать свойства этой операции.

Вспомним эти свойства:

1) Квадратный корень из произведения двух неотрицательных чисел равен произведению квадратных корней из этих чисел.

2) Если a≥0, b>0, то справедливо равенство

3) Если a≥0 и n – натуральное число, то

4) При любом a справедливо тождество

Если хорошо знать приёмы преобразования рациональных выражений, приёмы преобразования алгебраических дробей, усвоить определение понятия корня и свойства квадратного корня, уметь вносить множитель под знак квадратного корня, выносить множитель из – под знака квадратного корня, то можно выполнить преобразование любого выражения, содержащего операцию извлечения квадратного корня.

2) Способы преобразования радикалов

Кроме перечисленных теорем при преобразовании радикалов применяются некоторые специальные приёмы, тоже вытекающие из этих теорем, но требующие некоторого навыка.

Первый называется уничтожением иррациональности в знаменателе дроби. Если в знаменателе дроби имеется корень или несколько корней, то обращаться с такой дробью не совсем удобно. Смысл этого приёма заключается в том, что надо подобрать такой множитель, чтобы его произведение на знаменатель не содержало корней.

Второе интересное преобразование радикалов называется преобразованием двойного радикала .

4 этап работы. Ввести понятие двойного радикала и доказатьформулу сложного радикала.

Выражения вида и называют двойными радикалами или сложными радикалами. Преобразовать двойной радикалэто значит избавиться от внешнего радикала.

=

При каждое подкоренное выражение неотрицательно.

Докажем эти равенства(доказывает ученик):

Для этого возведём в квадрат обе части данных выражений, воспользовавшись при этом формулой квадрата суммы (разности) двух чисел и формулой разности квадратов.

Возведем в квадрат левую часть:

=

Возведем в квадрат правую часть:

= = = = = = = =

Заметим, что доказанное тождество позволяет существенно облегчить вычисления и преобразования, если выражение представляет полный квадрат.

5 этап работы. Рассмотрим способы преобразования двойного радикала.

1 способ:

Можно выполнить алгебраические действия в некотором выражении, содержащем двойные радикалы.

Примеры:

= = = = = =

= = = = ==

= = = = = =

2 способ

Можно привести подкоренное выражение к полному квадрату.

Примеры:

  1. === ====
  2. === ==
  3. ==== =

Таким образом, если подкоренное выражение представить в виде полного квадрата, то можно легко освободиться от внешнего радикала.

Попробуем решить

НЕ УДАЕТСЯ.

3 способ

В тех случаях, когда подкоренное выражение нелегко представить в виде полного квадрата, то можно использовать готовую формулу сложного радикала

=

Примеры:

  1. ===== ==
  2. ==== ==
  3. ==== ==

6 этап работы. Закрепление изученного материала.

Преобразуйте выражения, содержащие двойные радикалы:

7 этап работы. Вывод урока.

Преобразовать двойные радикалы можно следующим образом:

  1. выполняя в выражении, содержащем двойные радикалы, алгебраические действия, применив свойства квадратных корней;
  2. приводя подкоренное выражение к полному квадрату;
  3. используя формулы сложного радикала.

8 этап работы. Домашнее задание.

Дома вы преобразуете двойные радикалы разными способами (раздать листы с заданиями).

Квадратный корень

Рассмотрим задачу. Нам известно, что длина квадрата равна 14 см. Какова площадь этого квадрата? Из курса геометрии мы знаем, что для ответа на вопрос надо просто умножить сторону саму на себя, то есть возвести ее в квадрат:

S = 14•14 = 196 см 2

Теперь рассмотрим обратную задачу. Известно, что площадь квадрата равна 196 см 2 . Чему равна длина его стороны? Очевидно, что она составляет 14 см. Для нахождения ответа мы произвели действие, обратное возведению во вторую степень. В математике оно называется извлечением квадратного корня, а само число 14 – квадратным корнем из 196.

Так, 5 – это квадратный корень из числа 25, так как

Очень часто квадратный корень является не целым, а дробным числом. Так, корень из 2 примерно равен 1,414213562 (способы вычисления значения корня будут рассмотрены в этом же уроке, но позже).

Отметим, что порою можно указать для числа не один, а сразу два квадратных корня. Они будут отличаться своим знаком, но совпадать по абсолютной величине (модулю). Так число (–5) также является квадратным корнем из 25:

Вообще у любого положительного числа есть 2 квадратных корня, у любого отрицательного числа их вообще нет, и только у нуля есть единственное значение корня – сам нуль. Докажем это.

Пусть есть произвольное число а, для которого надо вычислить квадратный корень. Обозначим этот корень как х. Тогда по определению можно составить уравнение:

Попробуем решить его с помощью графиков. Для этого построим отдельные графики для левой и правой части равенства. Оба графика, и у = а, и у = х 2 , мы уже строили в 7 классе. В итоге получаем три случая:

Видно, что при а> 0 графики пересекаются в 2 точках, то есть существует два квадратных корня, которые отличаются лишь своими знаками.

Для определенности математики ввели понятие арифметического квадратного корня.

Ещё раз уточним, что у числа может быть два квадратных корня. Например, у числа 25 это –5 и 5:

Арифметическим же называют тот квадратный корень, у которого НЕТ знака минус.

Существует специальный символ для арифметического квадратного корня, который именуют знаком радикала, или просто знаком корня. Выглядит он так:

Если надо показать, что, например, арифметический квадратный корень (часто говорят просто корень) из 25 равен 5, то получается такая запись:

Под знаком радикала может стоять и выражение, содержащее переменные величины. Для его обозначения используют термин подкоренное выражение. Так, в записи

выражением х 2 + 2х + 2 является подкоренным.

Мы уже поняли, что из отрицательного числа невозможно извлечь квадратный корень, ведь каждое действительное число при умножении на само себя становится неотрицательным. Поэтому если под знаком радикала находится отрицательное число, то говорят, что выражение не имеет смысла (так же как и дробное выражение, у которого в знаменателе стоит ноль). Так, бессмысленны выражения:

Если под корнем находиться переменная, то при одних ее значениях выражение с корнем имеет смысл, а при других нет. Так, выражение

при х = 9 имеет значение, равное двум:

Но если х = 4, то получаем бессмысленное выражение:

Изучая понятие иррационального числа, мы уже сталкивались с корнями. Исторически именно корень из 2 стал первым числом, для которого была доказана его иррациональность. Числа, чей квадратный корень является целым числом, называются полными квадратами. Примерами полных квадратов являются:

  • 4 (потому что 2 2 = 4);
  • 9 (3 2 = 9);
  • 16 (4 2 = 16).

Для всех натуральных чисел, не являющихся полными квадратами, можно доказать, что их квадратные корни – это иррациональные числа.

Стоит отметить, что открытие иррациональностей корней изменило представления древних греков о числах и сыграло огромную роль в развитии математики.

Теперь рассмотрим порядок действий в выражениях с корнями. Сначала всегда производятся операции в скобках, потом под знаком радикала, далее происходит возведение в степень, и лишь потом другие арифметические операции. Например, есть выражение

Покажем последовательность действий, выделяя их красным цветом:

Если в ходе вычислений получили корень не из полного квадрата, то его следует оставить как есть, и продолжать вычисления, например:

Одинаковые корни можно складывать и вычитать друг с другом:

Из определения квадратного корня следует очевидное тождество:

Приведем пример с конкретными числами:

Однако здесь важно учитывать, что под знаком радикала не может находиться отрицательное число. Так, некорректной будет запись

так как под радикалом слева стоит отрицательное число. Но допускается такая запись:

потому что под знаком радикала слева стоит положительная величина (– 3)•( – 3) = 9.

Напомним, что модулем числа называется его величина, взятая без учета знака. Для обозначения модуля используются квадратные скобки:

Можно записать следующее тождество, связывающее модуль числа с его корнем:

Вычисление квадратного корня

Ранее для выполнения арифметических операций мы использовали метод «столбика». А как производить вычисление квадратного корня? Существует несколько приемов, мы рассмотрим простейший из них.

Очевидно, что чем больше число, тем больше и его квадрат. Например, 5 > 4, поэтому и 5 2 > 4 2 . Значит, справедливо и обратное утверждение: чем больше число, тем больше и его квадратный корень.

Убедиться в этом можно и с помощью графика функции у = х 2 . Будем отмечать на нем числа и их квадратные корни:

Видно, что чем выше на оси Оу располагается число, тем правее на оси Ох находится его квадратный корень.

Зная это свойство, легко оценить значение корня из любого числа. Продемонстрируем это на примере вычисления значение корня из 2. Нам известно, что

Значит, можно записать следующие неравенства:

Нам удалось определить, что корень из двух находится между единицей и двойкой, то есть

Теперь определим первую цифру после запятой для корня из двух. Будем возводить в квадрат десятичные дроби 1,1; 1,2; 1,3 и т. д, до тех пор пока не получим выражение, большее 2:

Теперь мы можем записать неравенства:

Получается, что корень имеет значение, находящееся между 1,4 и 1,5, то есть

Попытаемся определить ещё одну цифру после запятой:

Отсюда следует, что:

Продолжая подобные вычисления, можно вычислить любое количество знаков после запятой:

Конечно, на практике все вычисления выполняются компьютером, а не вручную. Однако программисты стремятся написать программы так, чтобы они работали как можно быстрее, то есть получали результат, выполняя меньшее количество вычислений. Поэтому на практике чаще используется метод бисекции (деления надвое), который отличается большей эффективностью. Для начала нужно найти очевидную оценку корня, например:

Получили, что корень из 2 находится между 1 и 2. Теперь найдем среднее арифметическое этих двух значений:

Возведем среднее арифметическое в квадрат:

Теперь мы можем записать неравенство

То есть искомое нами значение находится между 1 и 1,5. Снова найдем среднее этих двух оценок и возведем его в квадрат:

Зная это, можем записать:

На каждом следующем шаге вычислений мы будем всё точнее определять оценки корня, при этом вычислений мы делаем не очень много.

Периодически могут встречаться задания, в которых надо грубо оценить значение квадратного корня.

Пример. Сколько целых чисел на координатной прямой располагается между

Решение: Ближайшие к числу 60 полные квадраты – это 64 и 49, поэтому можно записать:

Также можно оценить и корень из 140:

Получаем, что между корнями располагается четыре числа: 8, 9, 10 и 11:

Функция квадратного корня

Каждому числу соответствует не более чем 1 арифметический квадратный корень. Поэтому формула

задает функцию. Исследуем ее.

Так как под знаком радикала может находиться лишь неотрицательное число, то областью определения корня является множество всех неотрицательных чисел. Такова же и область допустимых значений.

Построим график квадратного корня по точкам. Для этого вычислим ее значения в нескольких точках (указана точность до 0,1):

График функции квадратного корня будет выглядеть так:

Отметим, что полученная линия чем-то напоминает обычную параболу функции у = х 2 , которую «положили набок», то есть повернули против часовой стрелки на 90°, а после убрали одну из ветвей:

И это не случайность. Дело в том, что две эти функции являются обратными друг другу. Действительно, пусть с помощью графика параболы мы хотим найти значение величины а 2 . Стрелки показывают последовательность действий:

Мы должны найти а на оси Ох, построить от найденной точки вертикальную линию до пересечения с графиком, а потом провести горизонтальную линию. Но если нам надо вычислить корень из положительного числа b, то мы должны действовать в обратном порядке: найти b на вертикальной оси, провести горизонтальную линию до пересечения с параболой, и потом опустить перпендикуляр на горизонтальную ось:

Получается, для вычисления обеих функций можно использовать один график! Но, так как традиционно аргумент функции обозначают буквой х, а саму функцию как у, а также ось Ох располагают горизонтально, то для получения графика обратной функции надо буквально повернуть график основной функции так, чтобы оси Ох и Оу поменялись местами:

Действительно, в результате поворота получили уже знакомый график функции корня из х. Осталось лишь правильно переименовать оси и повернуть цифры в привычное положение.

Взаимное расположение этих графиков можно описать и иначе. Они симметричны относительно прямой линии, которую задает график у = х. Ведь если точка имеет координаты (а; b) принадлежит параболе у = х 2 , то, по определению корня, точка с обратными координатами (b; а) должна лежать на графике корня. Однако две такие точки будут симметричны относительно линии у = х:

Соответственно, симметричны относительно этой прямой и графики обратных функций:

Исключительно для большей наглядности (чтобы была очевидна симметрия, о которой идет речь), повернем эту картинку на 45°:

Свойства арифметического квадратного корня

Для упрощения некоторых выражений необходимо использовать особые правила работы с корнями. Сформулируем первое из них:

Математически это правило записывается так:

Тождество работает для любого количества множителей, а также в обратную сторону:

Однако следующее преобразование недопустимо:

Дело в том, что под знаком радикала не может быть отрицательное число! Слева под двумя радикалами стоят отрицательные числа, а справа под корнем находится уже положительная величина (– 2)•(– 32) = 64. В результате выражение слева не имеет смысл, а справа – имеет, поэтому знака равенства между ними быть не может.

Докажем это правило. Для этого возведем во вторую степень выражение

Получили, что по определению корня можно записать:

Следующее свойство касается дробей:

Символически это выглядит так:

Приведем примеры использования этого свойства:

Теперь докажем это правило. Можно записать, что

Значит, по определению верно равенство

Третье правило помогает извлекать корень из числа, возведенного в степень:

где а –действительное число (в том числе и отрицательное), а k – натуральное число.

Это тождество помогает выполнить следующие действия:

Стоит обратить внимание, что в последнем случае под корнем НЕ стоит отрицательное число, так как на самом деле (– 2) 10 – это положительное число. Вообще при возведении любого числа в четную степень получается неотрицательное число.

Для доказательства этого факта используем то, что

Зная это, можно выполнить преобразования:

Преобразование выражений с квадратными корнями

Изученные правила помогают преобразовывать некоторые выражения. Так, можно вынести множитель из-под знака корня:

Это действие может использоваться для сложения корней, у которых, казалось бы, стоят разные числа под знаком радикала:

Обратное действие называют внесением множителя под знак корня:

Пример. Какое число больше

Решение. Внесем множитель под знак корня:

Из двух корней больше тот, у которого больше подкоренное выражение, поэтому

Из этого следует, что

Заметим, что под знак радикала может быть внесен исключительно неотрицательный множитель! Знак минуса должен остаться перед радикалом:

Принято считать, что с дробью, содержащей радикал, проще работать, когда этот радикал находится в числителе, а не знаменателе. В связи с этим стремятся избавиться от иррациональности в знаменателе. В простейшем случае дробь просто домножают на квадратный корень:

Как видим, корень «переехал» из знаменателя в числитель. Несколько сложнее производится освобождение от иррациональности, если в знаменателе стоит сумма или разность корней. В этом случае помогает формула разности квадратов:

Рассмотрим несколько задач.

Пример. Найдите наибольшее значение выражения

Решение. По формуле разности квадратов можно записать:

Зная это, заменим знаменатель дроби:

Эта дробь принимает наибольшее значение тогда, когда ее числитель, наоборот, принимает минимальное значение. Это произойдет при а = 0, так как арифметический квадратный корень не может быть отрицательным. Тогда наибольшее значение дроби будет составлять

Пример. Упростите выражение

Довольно тяжелым является случай, когда под знаком корня находится другой корень. Выражения вида

называют двойным радикалом.

Существует формула двойного радикала, с помощью которой его можно иногда упростить:

Для доказательства справедливости этого тождества возведем его правую часть в квадрат, используя формулу квадрата суммы (х ± у) 2 = х 2 ± 2ху + у 2 :

Принципиально важно, что величина а 2 – b должна быть неотрицательной. Рассмотрим преобразование двойных радикалов на примере. Пусть надо освободиться от внешнего радикала в выражении

Для этого сначала внесем двойку под знак внутреннего радикала, а потом воспользуемся формулой:

Заметим, что формула двойного радикала полезна в том случае, если выражение а 2 – b является полным квадратом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *