Как решать симплекс методом для чайников

Подробный разбор симплекс-метода

Недавно появилась необходимость создать с нуля программу, реализующую алгоритм симплекс-метода. Но в ходе решения я столкнулся с проблемой: в интернете не так уж много ресурсов, на которых можно посмотреть подробный теоретический разбор алгоритма (его обоснование: почему мы делаем те или иные шаги) и советы по практической реализации — непосредственно, алгоритм. Тогда я дал себе обещание — как только завершу задачу, напишу свой пост на эту тему. Об этом, собственно, и поговорим.

Замечание. Пост будет написан достаточно формальным языком, но будет снабжен комментариями, которые должны внести некоторую ясность. Такой формат позволит сохранить научный подход и при этом, возможно, поможет некоторым в изучении данного вопроса.

§1. Постановка задачи линейного программирования

Определение: Линейное программирование – математическая дисциплина, посвященная теории и методам решения экстремальных задач на множествах n- мерного пространства, задаваемых системами линейными уравнений и неравенств.

Общая задача линейного программирования (далее – ЛП) имеет вид:

image

§2. Каноническая форма задачи ЛП

Каноническая форма задачи ЛП:

image

Замечание: Любая задача ЛП сводится к канонической.

Алгоритм перехода от произвольной задачи ЛП к канонической форме:

  1. Неравенства с отрицательными умножаем на (-1).
  2. Если неравенство вида (≤), то к левой части добавляем – добавочную переменную, и получаем равенство.
  3. Если неравенство вида (≥), то из левой части вычитаем , и получаем равенство.
  4. Делаем замену переменных:
  • Если , то
  • Если — любой, то , где

§3. Угловые точки. Базисные/свободные переменные. Базисные решения

Определение: Точка называется угловой точкой, если представление возможно только при .

Иными словами, невозможно найти две точки в области, интервал проходящий через которые содержит (т.е. – не внутренняя точка).

Графический способ решения задачи ЛП показывает, что нахождение оптимального решения ассоциируется с угловой точкой. Это является основной концепцией при разработке симплекс-метода.

Определение: Пусть есть система m уравнений и n неизвестных (m < n). Разделим переменные на два множества: (n-m) переменные положим равными нулю, а остальные m переменных определяются решением системы исходных уравнений. Если это решение единственно, то тогда ненулевые m переменных называют базисными; нулевые (n-m) переменных – свободными (небазисными), а соответствующие результирующие значения переменных называют базисным решением.

§4. Симплекс-метод

Симплекс-метод позволяет эффективно найти оптимальное решение, избегая простой перебор всех возможных угловых точек. Основной принцип метода: вычисления начинаются с какого-то «стартового» базисного решения, а затем ведется поиск решений, «улучшающих» значение целевой функции. Это возможно только в том случае, если возрастание какой-то переменной приведет к увеличению значения функционала.

Необходимые условия для применения симплекс-метода:

  1. Задача должна иметь каноническую форму.
  2. У задачи должен быть явно выделенный базис.

Замечание: Базисный вектор имеет размерность (m*1), где m – количество уравнений в системе ограничений.

Для удобства вычислений и наглядности обычно пользуются симплекс-таблицами:

image

  • В первой строке указывают «наименование» всех переменных.
  • В первом столбце указывают номера базисных переменных, а в последней ячейке – букву Z (это строка функционала).
  • В «середине таблицы» указывают коэффициенты матрицы ограничений — aij.
  • Последний столбец – вектор правых частей соответствующих уравнений системы ограничений.
  • Крайняя правая ячейка – значение целевой функции. На первой итерации ее полагают равной 0.

Замечание: Если ограничения в исходной задаче представлены неравенствами вида ≤, то при приведении задачи к канонической форме, введенные дополнительные переменные образуют начальное базисное решение.

Замечание: Коэффициенты в строке функционала берутся со знаком “-”.

Алгоритм симплекс-метода:

1. Выбираем переменную, которую будем вводить в базис. Это делается в соответствии с указанным ранее принципом: мы должны выбрать переменную, возрастание которой приведет к росту функционала. Выбор происходит по следующему правилу:

  • Если задача на минимум – выбираем максимальный положительный элемент в последней строке.
  • Если задача на максимум – выбираем минимальный отрицательный.

Замечание: Хотя мы и берем минимальное отрицательное число в задаче на максимум, этот коэффициент показывает направление роста функционала, т.к. строка функционала в симплекс-таблице взята со знаком “-”. Аналогичная ситуация с минимизацией.

Определение: Столбец симплекс-таблицы, отвечающий выбранному коэффициенту, называется ведущим столбцом.

2. Выбираем переменную, которую будем вводить в базис. Для этого нужно определить, какая из базисных переменных быстрее всего обратится в нуль при росте новой базисной переменной. Алгебраически это делается так:

  • Вектор правых частей почленно делится на ведущий столбец
  • Среди полученных значений выбирают минимальное положительное (отрицательные и нулевые ответы не рассматривают)

Замечание: Фактически, мы выражаем старые базисные переменные из каждого уравнения системы ограничений через остальные переменные и смотрим, в каком уравнении возрастание новой базисной переменной быстрее всего даст 0. Попадание в такую ситуацию означает, что мы «наткнулись» на новую вершину. Именно поэтому нулевые и отрицательные элементы не рассматриваются, т.к. получение такого результата означает, что выбор такой новой базисной переменной будет уводить нас из области, вне которой решений не существует.

3. Ищем элемент, стоящий на пересечении ведущих строки и столбца.

Определение: Такой элемент называется ведущим элементом.

4. Вместо исключаемой переменной в первом столбце (с названиями базисных переменных) записываем название переменной, которую мы вводим в базис.

5. Далее начинается процесс вычисления нового базисного решения. Он происходит с помощью метода Жордана-Гаусса.

  • Новая Ведущая строка = Старая ведущая строка / Ведущий элемент
  • Новая строка = Новая строка – Коэффициент строки в ведущем столбце * Новая Ведущая строка

6. После этого проверяем условие оптимальности. Если полученное решение неоптимально – повторяем весь процесс снова.

§5. Интерпретация результата работы симплекс-метода

1. Оптимальность

Условие оптимальности полученного решения:

  • Если задача на максимум – в строке функционала нет отрицательных коэффициентов (т.е. при любом изменении переменных значение итогового функционала расти не будет).
  • Если задача на минимум – в строке функционала нет положительных коэффициентов (т.е. при любом изменении переменных значение итогового функционала уменьшаться не будет).

Однако, стоит отметить, что заданный функционал может не и достигать максимума/минимума в заданной области. Алгебраический признак этого можно сформулировать следующим образом:

При выборе ведущей строки (исключаемой переменной) результат почленного деления вектора правых частей на ведущий столбец содержит только нулевые и отрицательные значения.

Фактически, это значит, что какой бы рост мы не задавали новой базисной переменной, мы никогда не найдем новую вершину. А значит, наша функция не ограничена на множестве допустимых решений.

3. Альтернативные решения

При нахождении оптимального решения возможен еще один вариант – есть альтернативные решения (другая угловая точка, дающая то же самое значение функционала).

Алгебраический признак существования альтернативы:

После достижения оптимального решения имеются нулевые коэффициенты при свободных переменных в строке функционала.

Это значит, что при росте соответствующей переменной с нулевым коэффициентом значение функционала не изменится и новое базисное решение будет также давать оптимум функционала.

Эпилог

Данная статья направлена на более глубокое понимание теоретической части. В замечаниях и пояснениях здесь можно получить ответы на вопросы, которые обычно опускают при изучении этого метода и принимают априори. Однако, надо понимать, что многие методы численной оптимизации основаны на симплекс-методе (например, метод Гомори, М-Метод) и без фундаментального понимания вряд ли получится сильно продвинуться в дальнейшем изучении и применении всех алгоритмов этого класса.

Чуть позже напишу статью о практической реализации симплекс-метода, а также несколько статей о Методе искусственных переменных (М-Метод), Методе Гомори и Методе ветвей и границ.

Линейное программирование. Симплекс-метод

Рассмотрим решение задачи с использованием рассмотренного выше алгоритма.
Дано:

Задача поиска максимума

Приводим задачу к каноническому виду:

Канонический вид

Вектора

Заполняем симплекс – таблицу:

Симплекс-таблица

Правило прямоугольников:
Пересчитаем первый элемент вектора Р0, для чего составляем прямоугольник из чисел: Правило прямоугольникови получаем: Правило прямоугольников.

Аналогичные расчеты выполним для всех остальных элементов симплекс – таблицы:

Симплекс-таблица

В полученном плане f – строка содержит один отрицательный элемент – (-5/3), вектора P1. Он содержит в своем столбце единственный положительный элемент, который и будет разрешающим элементом. Сделаем пересчет таблицы относительно этого элемента:

Симплекс-таблица

Отсутствие отрицательных элементов в f – строке означает, что найден оптимальный план:
F* = 36/5, Х = (12/5, 14/5, 8, 0, 0).

Рекомендуемая литература

  • Ашманов С. А. Линейное программирование, М: Наука, 1998г.,
  • Вентцель Е.С. Исследование операций, М: Советское радио, 2001г.,
  • Кузнецов Ю.Н., Кузубов В.И., Волошенко А.Б. Математическое программирование, М: Высшая школа, 1986г.

Решение линейного программирования на заказ

Заказать любые задания по этой дисциплине можно у нас на сайте. Прикрепить файлы и указать сроки можно на странице заказа.

Калькулятор симплекс-метода

Задача линейного программирования — это задача поиска неотрицательных значений параметров, на которых заданная линейная функция достигает своего максимума или минимума при заданных линейных ограничениях.

Симплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве. Алгоритм является универсальным методом, которым можно решить любую задачу линейного программирования.

Если вам тоже ничего не понятно из этого определения, то вы на верном пути. Чаще всего статьи про симплекс-метод очень сильно углубляются в дебри теории задачи линейного программирования, из-за чего очень легко потерять суть и так ничего и не понять. Мы постараемся описать алгоритм симплекс-метода так, чтобы показать, что в нём нет ничего страшного и на самом деле он весьма простой. Но сначала нам всё-таки потребуется ввести несколько определений.

Целевая функция — функция, максимум (или минимум) которой нужно найти. Представляет собой сумму произведений коэффициентов на значения переменных: F = c1·x1 + c2·x2 + . + cn·xn

Ограничение — условие вида a1·x1 + a2·x2 + . + an·xn v b , где вместо v ставится один из знаков: ≤, = или ≥

План — произвольный набор значений переменных x1 . xn.

Алгоритм решения основной задачи ЛП симплекс-методом

Пусть в задаче есть m ограничений, а целевая функция заивисит от n основных переменных. Первым делом необходимо привести все ограничения к каноническому виду — виду, в котором все условия задаются равенствами. Для этого предварительно все неравенства с ≥ умножаются на -1, для получения неравенств с ≤.

Чтобы привести ограничения с неравенствами к каноническому виду, для каждого ограничения вводят переменную, называемую дополнительной с коэффициентом 1. В ответе эти переменные учитываться не будут, однако сильно упростят начальные вычисления. При этом дополнительные переменные являются базисными, а потому могут быть использованы для формирования начального опорного решения.

Формирование начального базиса

После того как задача приведена к каноническому виду, необходимо найти начальный базис для формирования первого опорного решения. Если в процессе приведения были добавлены дополнительные переменные, то они становятся базисными.

Иначе необходимо выделить среди коэффициентов ограничений столбец, который участвует в формировании единичной матрицы в заданной строке (например, если требуется определить вторую базисную переменную, то необходимо искать столбец, в котором второе число равно 1, а остальные равны нулю). Если такой столбец найден, то переменная, соответствующая этому столбцу, становится базисной.

В противном случае можно поискать столбец, в котором все значения кроме числа в заданной строке равны нулю, и, если он будет найден, то разделить все значения строки на число, стоящее на пересечении этих строки и столбца, тем самым образовав столбец, участвующий в формировании единичной матрицы.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x6
Столбец 4 является частью единичной матрицы. Переменная x4 входит в начальный базис
В пятом столбце все значения кроме третьего равны нулю. Поэтому в качестве третьей базисной переменной берём x5 , предварительно разделив третью строку на 2.
Симплекс-таблица

базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
? 2 1 -4 0 2 0 30

После преобразования получаем следующую таблицу:

Если такой столбец отсутствует, то для формирования базиса необходимо применить исключение Гаусса для первого ненулевого столбца, который ещё не является базисным. Для этого вся строка делится на элемент в найденном столбце, а из остальных строк вычитается полученная строка, разделённая на значение, стоящее в этом же столбце. После этой операции все значения вне данной строки будут обнулены, и столбец можно будет считать базисным.

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x5

Начальная симплекс-таблица

базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 1
базис x1 x2 x3 x4 x5 b
x4 2 3 6 1 0 240
? 4 2 4 0 0 160
x5 4 6 8 0 1 200

Для определения второй базисной переменной ищем первый ненулевой столбец, который ещё не является базисным. Первый столбец не нулевой и не является базисным. Выполняем исключение Гаусса: делим строку 2 на 4, а из первой и третьей строк вычитаем вторую, умноженную на соответствующий элемент в первом столбце.

базис x1 x2 x3 x4 x5 b
x4 2 3 6 1 0 240
x1 4 2 4 0 0 160
x5 4 6 8 0 1 200

После исключения получаем следующую таблицу:

После того как базис сформирован, нужно построить начальную симплекс-таблицу. Она строится следующим образом:

  • Для удобства в первой строке можно записать коэффициенты Ci целевой функции (для дополнительных переменных эти коэффициенты равны нулю)
  • Вторая строка формирует шапку таблицы. В ней первый столбец называется базис, а остальные перечисляют основные переменные x1..xn и дополнительные xn+1..xn+k
  • Затем построчно перечисляются базисные переменные и коэффициенты ограничений

Схематично начальная таблица будет выглядеть примерно так:

базис x1 x2 x3 x4 x5 b
x4 0 2 4 1 0 160
x1 1
C с1 c2 . cn 0 0 . 0 0
базис x1 x2 . xn xn+1 xn+2 . xn+k b
xe1 a11 a12 . a1n a1n+1 a1n+2 . a1n+k b1
xe2 a21 a22 . a2n a2n+1 a2n+2 . a2n+k b2
. . . . . . . . . .
xem am1 am2 . amn amn+1 amn+2 . amn+k bm

Избавляемся от отрицательных свободных коэффициентов

После приведения к каноническому виду или после алгебраических преобразований при формировании базиса некоторые из свободных коэффициентов (bi) могли стать отрицательными, что не позволяет перейти к дальнейшим вычислениям. Чтобы избавиться от отрицательных значений b необходимо:

  • Найти строку, в которой находится максимальное по модулю значение b. Пусть это будет строка i;
  • Найти максимальный по модулю элемент в этой строке. Пусть он находится в столбце j;
  • Строку i разделить на элемент, стоящий на пересечении i-ой строки и j-го столбца;
  • Из каждой оставшейся строки k вычесть строку i, умноженную на элемент строки k и столбца j;
  • Переменную, соответствующую найденному столбцу j, сделать базисной (добавить в базис вместо переменной, находящейся в строке i).

Этот шаг необходимо повторять до тех пор, пока все отрицательные b не станут положительными или в строке не останется отрицательных элементов. Если строка с максимальным по модулю bi не содержит отрицательных элементов, то такая задача не имеет решений и на этом алгоритм заканчивает свою работу. В противном случае все bi положительны и алгоритм переходит к следующему этапу — расчёту дельт.

Для каждого ограничения с неравенством добавляем дополнительные переменные x4..x6.
Перепишем ограничения в каноническом виде:
— 4·x1 — 3·x2 — 2·x3 + x4 = -33
— 3·x1 — 2·x2 — x3 + x5 = -23
— x1 — x2 — 2·x3 + x6 = -12

Ищем начальное базисное решение:
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство, базисной будет добавленная дополнительная переменная x5
Ограничение 3 содержит неравенство, базисной будет добавленная дополнительная переменная x6

Начальная симплекс-таблица

C 20 20 10 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x4 -4 -3 -2 1 0 0 -33
x5 -3 -2 -1 0 1 0 -23
x6 -1 -1 -2 0 0 1 -12

В столбце b присутствуют отрицательные значения.
Максимальное по модулю |b|max = |-33| находится в первой строке.
Максимальный по модулю элемент в первой строке = -4 находится в первом столбце.
В качестве базисной переменной x4 берём x1.
Делим первую строку на -4. Из второй и третьей строк вычитаем первую, умноженную на соответствующий элемент в первом столбце.

. Из первой и второй строк вычитаем третью, умноженную на соответствующий элемент в третьем столбце.

Расчёт дельт

Дельты — это параметры, на основании которых проверяется оптимальность текущего решения и улучшается функция. Они рассчитываются для каждой из переменных ограничений и записываются последней строкой таблицы.

Для расчёта дельт используется следующая формула: Δi = ce1·a1i + ce2·a2i + . + cem·ami — ci. Проще говоря, чтобы вычислить дельту по заданной i-ой переменной, нужно перемножить коэффициенты условий в i-ом столбце на коэффициенты целевой функции при соответствующих базисных переменных, сложить эти произведения и вычесть из полученной суммы коэффициент целевой функции столбца i.

Проверка плана на оптимальность

После того как дельты рассчитаны, необходимо проверить оптимальность текущего плана. Критерий оптимальности формулируется следующим образом:
При максимизации функции: текущее решение считается оптимальным, если в таблице отсутствуют отрицательные дельты.
При минимизации функции: текущее решение считается оптимальным, если в таблице отсутствуют положительные дельты.

9·x1 + 5·x2 + 4·x3 + 3·x4 + 2·x5 → max
x1 — 2·x2 + 2·x3 ≤ 6
x1 + 2·x2 + x3 + x4 = 24
2·x1 + x2 — 4·x3 + x5 = 30
Симплекс-таблица с дельтами

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Критерий оптимальности: план оптимален, если в таблице отсутствуют отрицательные дельты.
План не оптимален, так как ищется максимум функции, а Δ1 = -2 отрицательна.

Если текущий план оптимален, то алгоритм завершает свою работу. Значениям переменных соответствуют значения столбца свободных коэффициентов b. Если свободной переменной нет в базисе, то её значение считается нулевым. Значение целевой функции, принимаемой на данном наборе, находится в строке с дельтами в том же столбце. Если какое-либо из значений столбца b отрицательно, то решения задачи не существует.

Переход к более оптимальному решению

Если текущий план оказался не оптимальным, то алгоритм ищет столбец с наименьшей (с наибольшей, если ищется минимум) дельтой. После чего вычисляются симплекс-отношения Q. Для этого значения свободных коэффициентов делятся на ненулевые коэффициенты из найденного столбца. Если результат деления получается отрицательным, то такие отношение игнорируются.

Среди найденных симплекс-отношений ищется строка, в которой находится симплекс-отношение с наименьшим значением. Если таких отношений нет, то алгоритм останавливает свою работу, так как целевая функция не ограничена и решения не существует.

Симплекс-таблица с дельтами

C 2 1 -2 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b
x1 1 -5 0 -3 0 -1 25
x5 0 -16 0 -7 1 -3 57
x3 0 -6 1 -2 0 -1 17
Δ 0 1 0 -2 0 0 16

Проверяем план на оптимальность: план не оптимален, так как ищется минимум функции, а Δ2 = 1 положительна.
Определяем разрешающий столбец — столбец, в котором находится максимальная дельта: 2, Δ2: 1
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения второго столбца

C 2 1 -2 0 0 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x1 1 -5 0 -3 0 -1 25
x5 0 -16 0 -7 1 -3 57
x3 0 -6 1 -2 0 -1 17
Δ 0 1 0 -2 0 0 16

Все значения второго столбца отрицательны. Функция не ограничена. Оптимальное решение отсутствует.

В противном случае строка с наименьшим отношением считается разрешающей и, аналогично избавлению от отрицательных свободных коэффициентов, делится на разрешающий элемент, расположенный в найденных столбце и строке, и из остальных строк вычитается найденная строка, разделённая на значения, стоящие в этом же столбце соответствующей строки. Переменная, стоящая в разрешающем столбце заменяет базисную переменную, находящуюся в найденной строке.

После этого вычисляются новые дельты и проверяется новый план. Так продолжается до тех пор пока не будет выполнен критерий оптимальности плана или не будет установлено, что решение не существует.

Симплекс-таблица с дельтами

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b
x6 1 -2 2 0 0 1 6
x4 1 2 1 1 0 0 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Проверяем план на оптимальность: план не оптимален, так как Δ1 = -2 отрицательна.

Итерация 1

Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 3, Δ3: -9
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения третьего столбца
В найденном столбце ищем строку с наименьшим значением Q: Qmin = 3, строка 1.
На пересечении найденных строки и столбца находится разрешающий элемент: 2
В качестве базисной переменной x6 берём x3.

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3 1 -2 2 0 0 1 6 6 / 2 = 3
x4 1 2 1 1 0 0 24 24 / 1 = 24
x5 2 1 -4 0 1 0 30
Δ -2 3 -9 0 0 0 132

Делим первую строку на 2. Из второй и третьей строк вычитаем первую, умноженную на соответствующий элемент в третьем столбце.
Вычисляем новые дельты: Δi = C3·a1i + C4·a2i + C5·a3i — Ci

Итерация 2

Определяем разрешающий столбец — столбец, в котором находится минимальная дельта: 2, Δ2: -6
Находим симплекс-отношения Q, путём деления коэффициентов b на соответствующие значения второго столбца
В найденном столбце ищем строку с наименьшим значением Q: Qmin = 7, строка 2.
На пересечении найденных строки и столбца находится разрешающий элемент: 3
В качестве базисной переменной x4 берём x2.

Метод искусственного базиса

Очень часто при решении задачи линейной оптимизации бывает довольно сложно выполнять алгебраические преобразования над коэффициентами ограничений для поиска начального базиса. Для упрощения вычислений существует альтернативный метод решения, называемый методом искусственного базиса. Его суть заключается в том, что вместо того, чтобы искать базис среди имеющихся основных и дополнительных переменных, ввести так называемые искусственные переменные, которые сформируют начальный базис. Возможно, звучит сложно и непонятно, но сейчас мы всё объясним.

Подготовительный этап

Аналогично базовому симплекс-методу для всех ограничений с неравентством вводятся дополнительные переменные, причём для ограничений с ≥ они берутся с коэффициентом -1, а для ограничений с ≤ с коэффициентом 1. Ограничения с равенством остаются без изменений. Если свободный коэффициент какого-либо из ограничений меньше нуля, то такое ограничение умножается на -1 (знак неравенства при этом меняется на противоположный). После этого приступают к поиску базиса.

Для каждого ограничения с неравенством добавляем дополнительные переменные x4 и x5.
Ограничение 1 содержит неравенство, базисной будет добавленная дополнительная переменная x4
Ограничение 2 содержит неравенство с ≥. Базисная переменная для этого ограничения будет определена позднее.
Ограничение 3 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.

Начальная симплекс-таблица

C 9 5 4 3 2 0 0
базис x1 x2 x3 x4 x5 x6 b Q
x3
C 3 2 3 0 0 0
базис x1 x2 x3 x4 x5 b
x4 2 1 1 1 0 2
?1 3 8 2 0 -1 8
?2 2 0 1 0 0 1

Формирование начального базиса

Для того, чтобы сформировать начальный базис в первую очередь можно поискать столбец, у которого одно значение равно единице, а все значения остальные значения равны нулю, и сделать соответствующую переменную базисной для этой строки. Однако такое случается довольно редко, поэтому проще сразу перейти к следующему пункту. Для всех ограничений, не имеющих базисной переменной, добавляем искусственную переменную с коэффициентом 1. В целевую функцию добавляем эту же переменную с коэффициентов -M, если ищется максимум или с коэффициентом M, если ищется минимум. M всего лишь является очень большим числом.

x1 — x2 → min
2·x1 + x2 = 1
x1 — 3·x2 + x3 = 3
x1 + 11·x2 = 11
Ограничение 1 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.
Столбец 3 является частью единичной матрицы. Переменная x3 входит в начальный базис
Ограничение 3 содержит равенство. Базисная переменная для этого ограничения будет определена позднее.

Начальная симплекс-таблица

C 1 -1 0 0
базис x1 x2 x3 b
?1 2 1 0 1
x3 1 -3 1 3
?3 1 11 0 11

Для ограничения 1 добавляем искусственную переменную u1 и делаем её базисной.
Для ограничения 3 добавляем искусственную переменную u2 и делаем её базисной.
В целевую функцию добавляем искусственные пременные с коэффициентом M, где M — очень большое число.

Таблица с искусственными переменными

C 1 -1 0 M M 0
базис x1 x2 x3 u1 u2 b
u1 2 1 0 1 0 1
x3 1 -3 1 0 0 3
u2 1 11 0 0 1 11

Перепишем условие задачи с учётом добавленных искусственных переменных:
F = 1x1 -1x2 + Mu1 + Mu2 → min
2·x1 + x2 + u1 = 1
x1 — 3·x2 + x3 = 3
x1 + 11·x2 + u2 = 11

Расчёт дельт и проверка плана на оптимальность

После того, как начальный базис сформирован необходимо вычислить дельты. Дельты вычисляются полностью аналогично базовому методу: Δi = ce1·a1i + ce2·a2i + . + cem·ami — ci. Единственным отличием будет тот факт, что результат может содержать значения с M. Когда дельты будут получены необходимо проверить текущий опорный план на оптимальность (см. проверку плана на оптимальность в базовом симплекс-методе). Если план оптимален, то алгоритм завершает свою работу, иначе формирует более оптимальное решение и повторяет процесс.

Таблица с искусственными переменными

C 3 2 3 0 0 0 M M 0
базис x1 x2 x3 x4 x5 x6 u1 u2 b
x4 2 1 1 1 0 0 0 0 2
u1 3 0 2 0 -1 0 1 0 3
u2 0 0 1 0 0 -1 0 1 1

Вычисляем дельты: Δi = C4·a1i + C7·a2i + C8·a3i — Ci
Симплекс-таблица с дельтами

C 3 2 3 0 0 0 M M 0
базис x1 x2 x3 x4 x5 x6 u1 u2 b
x4 2 1 1 1 0 0 0 0 2
u1 3 0 2 0 -1 0 1 0 3
u2 0 0 1 0 0 -1 0 1 1
Δ -3 + 3M -2 -3 + 3M 0 -M -M 0 0 4M

Текущий план X: [ 0, 0, 0, 2, 0, 0, 3, 1 ]
Целевая функция F: 3·0 + 2·0 + 3·0 + 0·2 + 0·0 + 0·0 + M·3 + M·1 = 4M
Проверяем план на оптимальность: план не оптимален, так как Δ1 = -3 + 3M положительна.

Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.

Симплекс метод решения задач линейного программирования: типичный пример и алгоритм

Симплекс метод — это метод последовательного перехода от одного базисного решения (вершины многогранника решений) системы ограничений задачи линейного программирования к другому базисному решению до тех пор, пока функция цели не примет оптимального значения (максимума или минимума).

Симплекс-метод является универсальным методом, которым можно решить любую задачу линейного программирования, в то время, как графический метод пригоден лишь для системы ограничений с двумя переменными.

Симплекс метод был предложен американским математиком Р.Данцигом в 1947 году, с тех пор для нужд промышленности этим методом нередко решаются задачи линейного программирования с тысячами переменных и ограничений.

Перед тем, как перейти к алгоритму симплекс метода, несколько определений.

Всякое неотрицательное решение системы ограничений называется допустимым решением.

Последнюю строку таблицы, в которой записаны функция цели и коэффициенты при свободных переменных в ней, будем называть в индексной строкой.

Полученное решение не оптимально, так как в индексной строке коэффициенты при свободных переменных отрицательны. То есть оптимальным будет то решение, в котором коэффициенты при свободных переменных в индексной строке будут больше или равны нулю.

Для перехода к следующей таблице найдём наибольшее (по модулю) из чисел и . Это число 2. Поэтому ведущий столбец — тот столбец, в котором записано

Для определения ведущей строки находим минимум отношений свободных членов к элементам ведущего столбца, причём если в числителе положительное число, а в знаменателе отрицательное, отношение считается равным бесконечности.

Поэтому ведущая строка — та, в которой записано

Ведущим элементом, таким образом, является -2.

Составляем вторую симплексную таблицу.

Новый базисный элемент вписываем первой строкой, а столбец, в котором стояло , вписываем новую свободную переменную

Заполняем первую строку. Для этого все числа, стоящие в ведущей строке таблицы 1, делим на ведущий элемент и записываем в соответствующий столбец первой строки таблицы 2, кроме числа, стоящего в ведущем столбце, куда записывается величина, обратная ведущему элементу (то есть, единица, делённая на ведущий элемент).

Заполняем столбец вспомогательных коэффициентов. Для этого числа ведущего столбца таблицы 1, кроме ведущего элемента, записываем с противоположными знаками в графу вспомогательных коэффициентов таблицы 2.

Таблица 2
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X1 X3
X2 1 -1/2 -1/2
X4 -3 -3/2 -1/2 1
X5 3 1/2 -1/2 1
X6 5 1/2 1/2 -1
F 2 -2 -1 2

Кто ещё не открыл в новом окне пособие Действия с дробями, может сделать это сейчас, поскольку самое время.

Для получения остальных строк таблицы 2 числа, уже стоящие в первой строке этой таблицы, умножаем на вспомогательный коэффициент, стоящий в заполняемой строке, и к результату прибавляем число из таблицы 1, стоящее в той же строке при соответствующей переменной.

Например, для получения свободного члена второй строки число 1 умножаем на 1 и прибавляем из таблицы 1 число -4. Получаем -3. Коэффициент при во второй строке находим так же: . Так как в предыдущей таблице отсутствует столбец с новой свободной переменной , то коэффициент второй строки в столбце новой свободной переменной будет (то есть из таблицы 1 прибавляем 0, так как в таблице 1 столбец с отсутствует).

Так же заполняется и индексная строка:

Полученное таким образом решение вновь не оптимально, так как в индексной строке коэффициенты при свободных переменных вновь отрицательны.

Для перехода к следующей симплексной таблице найдём наибольшее (по модулю) из чисел и , то есть, модулей коэффициентов в индексной строке. Это число 2. Поэтому ведущий столбец — тот столбец, в котором записано .

Для поиска ведущей строки найдём минимум отношений свободных членов к элементам ведущей строки. Получаем:

Следовательно, ведущая строка — та, в которой записано , а ведущим элементом является -3/2.

Составляем третью симплексную таблицу

Новую базисную переменную записываем первой строкой. В столбец, в котором было , вписываем новую свободную переменную .

Таблица 3
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X4 X3
X1 2 -2/3 1/3
X2 2 -1/3 -1/3 1/2
X5 2 1/3 -2/3 -1/2
X6 4 1/3 1/3 -1/2
F 6 -4/3 -1/3 2

Вычисление остальных строк на примере второй строки:

Полученное решение вновь не оптимальное, поскольку коэффициенты при свободных неизвестных в индексной строке вновь отрицательные.

Для перехода к четвёртой симплексной таблице найдём наибольшее из чисел и . Это число .

Следовательно, ведущий столбец — тот, в котором записано .

Для нахождения ведущей строки найдём минимум модулей отношений свободных членов к элементам ведущего столбца:

Поэтому ведущая строка — та, в которой записано , а ведущий элемент 1/3.

В четвёртой симплексной таблице новую базисную переменную записываем первой строкой. В столбец, где было , записываем новую свободную переменную .

Таблица 4
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X5 X3
X4 6 3 -2
X1 6 2 -1 2/3
X2 4 1 -1 1/3
X6 2 -1 1 -1/3
F 14 4 -3 4/3

Вычисление остальных строк на примере второй строки:

Полученное решение так же не оптимально, но оно уже лучше предыдущих, так как один из коэффициентов при свободных переменных в индексной строке неотрицателено.

Для улучшения плана перейдём к следующей симплексной таблице.

Найдём наибольшее из чисел 4 и . Это число 4. Следовательно, ведущий столбец .

Для нахождения ведущей строки найдём

Следовательно, ведущая строка — та, в которой записано . Но и уже были вместе среди свободных переменных. Поэтому для перевода очередной переменной из свободных в базисные выбираем другой ведущий столбец — тот, в котором записано .

Для нахождения ведущей строки найдём

Следовательно, ключевая строка — та, в которой записано , а ведущий элемент 1.

В пятой симплексной таблице новую базисную переменную записываем первой строкой. В столбец, где было , записываем новую свободную переменную .

Таблица 5
Базисные неизвестные Свободные члены Свободные неизвестные Вспомогательные коэффициенты
X5 X6
X3 2 -1 1
X4 10 2
X1 8 1
X2 6 1
F 20 1 3 3

Попробуем сразу узнать, не является ли решение оптимальным. Поэтому для остальных строк вычислим только свободные члены (чтобы узнать значения базисных переменных при равенстве свободных переменных нулю) и коэффициенты при свободных переменных в индексной строке.

— во второй строке ;

— в третьей строке ;

— в четвёртой строке .

Смотрим в симплексную таблицу 5. Видим, что получено оптимальное решение, так как коэффициенты при свободных неизвестных в индексной строке неотрицательны.

Симплекс метод с алгебраическими преобразованиями

Решим алгебраическими преобразованиями тот же пример, что и в предыдущем параграфе. Следует отметить, что при решении этой разновидностью симплекс метода лучше не записывать функцию цели в виде , так как при этом легко запутаться в знаках. Но в этом случае пункт алгоритма, определяющий критерий оптимальности, будет модифицирован следующим образом.

Если отыскивается максимум (минимум) линейной формы и в её выражении нет неосновных переменных с положительными (отрицательными) коэффициентами, то критерий оптимальности выполнен и полученное базисное решение является оптимальным — решение окончено. Если при нахождении максимума (минимума) линейной формы в её выражении имеется одна или несколько неосновных переменных с положительными (отрицательными) коэффициентами, перейти к новому базисному решению.

Пример. Найти максимум функции при ограничениях

Шаг I. Вводим добавочные неотрицательные переменные и сводим данную систему неравенств к эквивалентной ей системе уравнений

Введённые добавочные переменные принимаем за основные, так как в этом случае базисное решение системы легко находится. Тогда и — неосновные переменные.

Выразив основные переменные через неосновные, получим

Следовательно, данному разбиению переменных на основные и неосновные соответствует базисное решение , которое является недопустимым (две переменные отрицательны), а поэтому оно не оптимальное. От этого базисного решения перейдём к улучшенному.

Чтобы решить, какую переменную следует перевести из неосновных в основные, рассмотрим любое из двух имеющихся уравнений последней системы с отрицательными свободными членами, например второе. Оно показывает, что в основные переменные можно перевести и , так как в этом уравнении они имеют положительные коэффициенты (следовательно, при их увеличении, а это произойдёт, если переведём любую из них в основные переменные, переменная увеличится).

Попробуем перевести в основные переменную . Чтобы установить, какую переменную следует перевести из основные в неосновные, найдём абсолютную величину наименьшего отношения свободных членов системы к коэффициентам при . Имеем . Оно получено из третьего уравнения, показывающего, что в неосновные нужно перевести переменную , которая в исходном базисном решении положительна. Следовательно, полученное базисное решение, как и исходное, содержит две отрицательные компоненты, т. е. при переходе к такому базисному решению улучшения не произойдёт.

Если же перевести в основные переменную , то наименьшее отношение свободных членов к коэффициентам при составит . Оно получено из первого уравнения, в котором свободный член отрицателен. Следовательно, переводя в основные, а в неосновные переменные, мы получим базисное решение, в котором число отрицательных компонент на единицу меньше, чем в исходном. Поэтому остановимся на этой возможности: переводим в основные, а в неосновные переменные. Поэтому в приведённой выше системе уравнений выделенным оказалось первое уравнение.

Основные переменные , неосновные переменные .

Выразим новые основные переменные через новые неосновные, начиная с выделенного на шаге I уравнения. В результате получим

Следовательно, имеем новое базисное решение , которое также является недопустимым, а поэтому не оптимальным. Но в нём, как мы и предвидели, только одна переменная отрицательна (а именно ).

От полученного базисного решения необходимо перейти к другому. Рассмотрим уравнение с отрицательным свободным членом, т. е. второе уравнение. Оно показывает, что в основные переменные можно перевести и . Переведём в основные переменные . Найдём наименьшее из абсолютных величин отношений свободных членов системы к коэффициентам при . Имеем . Значит, в неосновные переменные нужно перенести . Так как наименьшее отношение получено из второго уравнения, то его выделяем. В новом базисном решении уже не окажется отрицательных компонент, т. е. оно является допустимым.

В особых случаях решение завершается на II шаге: это, например, случаи, когда максимум целевой функции — бесконечность и когда система не имеет ни одного решения.

Основные переменные: , неосновные переменные: . Выразив основные переменные через неосновные, получим

Новое базисное решение имеет вид . Является ли оно оптимальным, можно установить, если выразить линейную форму через неосновные переменные рассматриваемого базисного решения. Сделав это, получим . Так как мы ищем максимум линейной формы, а нашли лишь одно допустимое решение, то продолжим перебор.

Переводим в число основных переменную , имеющую больший положительный коэффициент. Находим . Это наименьшее отношение получено из третьего уравнения системы, поэтому его выделяем. Оно показывает, что при переменная и поэтому перейдёт в число неосновных.

В некотором особом случае решение завершается на III шаге: это случай, когда оптимальное решение — не единственное.

Основные переменные: , неосновные переменные: . Выразив основные переменные через неосновные, получим

Линейная форма, выраженная через те же неосновные переменные, примет вид . Продолжим перебор для поиска максимума.

Увеличение линейной формы возможно при переходе к новому базисному решению, в котором переменная является основной. Находим . Это наименьшее отношение получено из четвёртого уравнения системы и показывает, что при переменная и переходит в число неосновных.

Основные переменные: , неосновные переменные: . Выразив основные переменные через неосновные, получим

Линейная форма, выраженная через неосновные переменные нового базисного решения, имеет вид . Критерий оптимальности для случая максимизации линейной формы выполнен. Следовательно, базисное решение является оптимальным, а максимум линейной формы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *