Как посчитать площадь пятиугольника с разными сторонами

Площадь многоугольника

Пример многоугольникаПример многоугольника

Данный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.

Смотрим на картинку — площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE. Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно — площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.

А это довольно удобно, например, при бытовом ремонте — длины-то всяко проще померять, чем углы.

Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры. Для проверки также выводятся площади обсчитанных им треугольников. В поле «Ошибка» выводится вершина, которую не удалось сопоставить ни одному треугольнику (если, например, введены еще не все диагонали).

По умолчанию в таблицу введены стороны и диагонали многоугольника на картинке, что легко исправить, нажав кнопку «Очистить таблицу».

Площадь правильного и неправильного пятиугольника: как рисовать, упражнения

Для расчета площадь пятиугольника для начала нам нужно определить, регулярно это или нет. Пятиугольник — это многоугольник, замкнутая плоская фигура с пятью сторонами. Когда многоугольник правильный, это означает, что длина его сторон одинакова, а его внутренние углы одинаковы.

В этом случае есть формула для вычисления точной площади правильного многоугольника, зная некоторые из его основных характеристик, которые мы выведем позже.

Если многоугольник не правильный, то есть имеет стороны разных размеров и неравные внутренние углы, единой формулы не существует.

Однако математики нашли методы вычислений, такие как разделение фигуры на другие с меньшим количеством сторон, такие как треугольники, квадраты и прямоугольники, размеры которых легко узнать или вычислить.

Еще одна процедура для вычисления площадей полигонов в целом, зная координаты их вершин, — это метод, называемый Гауссовские детерминанты, о котором мы расскажем позже.

Как найти площадь правильного пятиугольника?

Мы собираемся взять правильный пятиугольник со стороной a и разделить его на 5 равных треугольников, как показано на рисунке, проведя отрезки от центра (красный) до вершин (синий).

В свою очередь, треугольники, как и тот, который выделен желтым справа на рисунке выше, делятся на два равных прямоугольных треугольника благодаря зеленому сегменту, который называется апофема.

Апофема определяется как перпендикулярный сегмент, который соединяет центр многоугольника с центром одной из сторон. Его длина LК.

Площадь прямоугольного треугольника с основанием a / 2 и высотой LК это:

Пентагон состоит из 10 таких треугольников, поэтому его площадь равна:

А = 10 (а / 2) х LК

Но периметр п пятиугольника равно P =10а, поэтому площадь определяется как произведение периметра и длины апофемы:

Площадь правильного пятиугольника, знающая сторону a

Выражая длину апофемы LК как функция стороны a, зная, что указанный угол составляет половину центрального угла, то есть 36º, что эквивалентно:

Методом элементарной тригонометрии через тангенс острого угла 36º:

Подставив в область, выведенную в предыдущем разделе, и зная, что P = 5a:

Площадь правильного пятиугольника, зная его радиус

В радио правильного многоугольника — это отрезок, идущий от центра до одной из его вершин. Он соответствует радиусу описанной окружности, как показано на следующем рисунке:

Пусть R — мера указанного радиуса, которая совпадает с гипотенузой прямоугольного треугольника, выделенного синим цветом на предыдущем рисунке. По тригонометрии:

sin 36º = sin (π / 5) = (a / 2) ÷ R

А = P x LК / 2 = 5р. sin (π / 5) x R. cos (π / 5) = 5R 2 [sin (π / 5) x cos (π / 5)]

Используя формулу двойного угла:

грех (2θ) = 2 греха θ. cos θ

[sin (π / 5) x cos (π / 5)] = (1/2) sin 72º

Итак, подставив это значение, мы получим следующую формулу для площади правильного пятиугольника:

А = (5/2) R 2 .sen 72º

Как рассчитать площадь неправильного пятиугольника?

Как мы уже говорили ранее, для неправильного многоугольника не существует уникальной формулы, но есть два метода, которые обычно работают очень хорошо: первый называется триангуляцией, а второй — методом детерминантов Гаусса.

Триангуляция

Он состоит из деления фигуры на треугольники, площадь которых легче вычислить, или ее также можно проверить с другими фигурами, площадь которых известна, такими как квадраты, прямоугольники и трапеции.

Гауссовские детерминанты

Другой способ найти площадь неправильного пятиугольника или другого неправильного многоугольника — это поместить фигуру в декартову систему координат, чтобы найти координаты вершин.

Зная эти координаты, применяется гауссовский метод определителей для вычисления площади, которая определяется следующей формулой:

Где A — площадь многоугольника, а (xп , Yп ) — координаты вершин. Многоугольник с n сторонами имеет 5 вершин, для пятиугольника это будет n = 5:

Полосы, сопровождающие формулу, представляют собой столбцы модуля или абсолютного значения.

Это означает, что даже если результат операции отрицательный, мы должны выразить его положительным знаком, а если он уже положительный, то его нужно оставить с этим знаком. Это потому, что площадь всегда является положительной величиной.

Процедура названа гауссовскими детерминантами в честь ее создателя, немецкого математика Карла Ф. Гаусса (1777-1855). Указанные операции эквивалентны определителю матрицы 2 × 2, например, первый определитель равен:

Чтобы найти площадь пятиугольника, мы должны решить 5 определителей, сложить результат алгебраически, разделить его на 2 и, наконец, выразить площадь всегда с положительным знаком.

Решенные упражнения

Упражнение 1

Найдите площадь правильного пятиугольника, апофема которого равна 4 см, а сторона — 5,9 см.

Решение

Поскольку это правильный пятиугольник, а у нас есть размеры стороны и апофемы, мы используем формулу, полученную выше:

Периметр P равен 5a = 5 x 5,9 см = 29,5 см.

A = 29,5 см x 4 см / 2 = 59 см 2

Упражнение 2.

Найдите площадь неправильного пятиугольника, как показано. Известны следующие размеры:

Решение

Площадь пятиугольника — это сумма площадей треугольников, которые являются прямоугольниками. В заявлении говорится, что DC ≈ DE, поэтому при применении теоремы Пифагора к треугольнику EDC мы имеем:

EC 2 = 2 ED 2 . Тогда EC = √2.ED.

Треугольники AEC и ABC имеют общую гипотенузу — отрезок AC, поэтому:

EA 2 + EC 2 = AB 2 + BC 2

Поскольку EA и AB измеряют одно и то же, отсюда следует, что:

Поскольку BC = 12, то ED = 12 / √2 = 8,485.

Используя эти значения, мы рассчитаем площадь каждого треугольника и добавим их в конце.

Площадь треугольника EDC

ED x DC / 2 = 8,485 2 / 2 = 36

Площадь треугольника AEC

EA x EC / 2 = EA x √2. ED / 2 = 5 x √2. 8 485/2 = 30

Площадь треугольника ABC

Тогда искомая область:

Это то же самое, что и треугольник AEC, поскольку они оба имеют одинаковые размеры.

Площадь неправильного пятиугольника

Наконец, запрашиваемая площадь представляет собой сумму площадей трех треугольников:

Пятиугольник, виды, свойства и формулы

Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.

Пятиугольник, выпуклый и невыпуклый пятиугольник:

Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.

Пятиугольник – фигура, состоящая из пяти углов (вершин), которые образуются пятью отрезками (сторонами).

Пятиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый пятиугольник – это пятиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Выпуклый пятиугольник

Рис. 1. Выпуклый пятиугольник

Сумма внутренних углов любого выпуклого шестиугольника равна 540°.

Невыпуклый пятиугольник – это пятиугольник, у которого одна часть его точек лежат по одну сторону, а другая часть – по другую от любой прямой, проходящей через две его соседние вершины.

Невыпуклый пятиугольник

Рис. 2. Невыпуклый пятиугольник

Звёздчатый пятиугольник (пентаграмма) – пятиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого пятиугольника могут пересекаться между собой.

Правильный многоугольник:

Правильный пятиугольник (пентагон) – это правильный многоугольник с пятью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный пятиугольник – это пятиугольник, у которого все стороны равны, а все внутренние углы равны 108°.

Правильный пятиугольник

Рис. 3. Правильный пятиугольник

Правильный пятиугольник имеет 5 сторон, 5 углов и 5 вершин.

Углы правильного семиугольника образуют семь равнобедренных треугольников .

Правильный пятиугольник может быть построен с помощью циркуля и линейки или вписыванием его в заданную окружность, или построением на основе заданной стороны.

Свойства правильного пятиугольника:

1. Все стороны правильного пятиугольника равны между собой.

2. Все углы равны между собой и каждый угол равен 108°.

Правильный пятиугольник

Рис. 4. Правильный пятиугольник

3. Сумма внутренних углов правильного пятиугольника равна 540°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного пятиугольника O.

Правильный пятиугольник

Рис. 5. Правильный пятиугольник

5. Количество диагоналей правильного пятиугольника равно 5.

Правильный пятиугольник

Рис. 6. Правильный пятиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр пятиугольника O.

Правильный пятиугольник

Рис. 7. Правильный пятиугольник

7. Диагонали правильного пятиугольника являются трисектрисами его внутренних углов.

Правильный пятиугольник

Рис. 8. Правильный пятиугольник

8. Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.

a / c ≈ 5 / 8 ≈ 0,618.

Правильный пятиугольник

Рис. 9. Правильный пятиугольник

Построение правильного пятиугольника:

Метод построения правильного пятиугольника вписыванием его в заданную окружность:

1. Постройте окружность, в которую будет вписан пятиугольник, и обозначьте её центр как O.

2. Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.

3. Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.

4. Постройте точку C посередине между O и B.

5. Проведите окружность с центром в точке C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.

6. Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F.

7. Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.

8. Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.

9. Постройте правильный пятиугольник AEGHF.

Формулы правильного пятиугольника:

Пусть a – сторона пятиугольника, r – радиус окружности, вписанной в пятиугольник, R – радиус описанной окружности пятиугольника, S – площадь пятиугольника, h – высота пятиугольника, d – диагональ пятиугольника, Ф – отношение золотого сечения.

Формулы площади правильного пятиугольника:

Формулы высоты правильного пятиугольника:

Формулы стороны правильного пятиугольника:

Формулы диагонали правильного пятиугольника:

Формулы радиуса окружности, вписанной в правильный пятиугольник:

Формулы радиуса окружности, описанной вокруг правильного пятиугольника:

Правильный пятиугольник в природе, технике и культуре:

Пентасимметрию можно наблюдать в некоторых фруктах (например, у мушмулы германской), у иглокожих (например, у морских звёзд) и у некоторых растений.

Исследования формирования водяного льда на ровной поверхности меди при температурах 100-140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.

Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.

Паркет, тротуарная плитка, мозайки и т.п. может выкладываться элементами, которые имеют вид пятиугольников.

Государственный знак качества СССР имеет форму пятиугольника с выпуклыми сторонами.

Расчет площади пятиугольного участка

Площадь пятиугольного участка — это числовая характеристика участка земли, показывающая его размер в квадратных метрах или сотках.

пятиугольный участок

Формула расчета площади пятиугольного участка (по формуле Герона):

S = S1 + S2 + S3

S1, S2, S3 = √(p(p-a)(p-b)(p-c))

S — площадь участка;
S1, S2, S2 — площадь части участка;
p — полупериметр;
a,b,c — длины сторон.

Смотрите также расчеты площадей участков другой формы — виды участков.

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор для расчета площади пятиугольного участка в зависимости от длин его сторон. С помощью этого калькулятора вы в один клик сможете вычислить площадь пятиугольного участка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *