Площадь многоугольника
Пример многоугольника
Данный калькулятор обсчитывает площадь многоугольника по введенным сторонами и диагоналям, разбивающим многоугольник на непересекающиеся треугольники.
Смотрим на картинку — площадь многоугольника ABCDE можно вычислить как сумму площадей треугольников ABD, BCD и ADE. Для этого, понятно, помимо длин сторон многоугольника, надо знать еще и длины диагоналей BD и AD, но это и все что нужно — площадь любого треугольника можно вычислить только по длинам его сторон, без измерения углов.
А это довольно удобно, например, при бытовом ремонте — длины-то всяко проще померять, чем углы.
Итак, измеряем длины сторон интересующего нас многоугольника, заносим их в таблицу, мысленно разбиваем многоугольник на треугольники, измеряем нужные диагонали, также заносим их в таблицу, после чего калькулятор рассчитывает площадь всей фигуры. Для проверки также выводятся площади обсчитанных им треугольников. В поле «Ошибка» выводится вершина, которую не удалось сопоставить ни одному треугольнику (если, например, введены еще не все диагонали).
По умолчанию в таблицу введены стороны и диагонали многоугольника на картинке, что легко исправить, нажав кнопку «Очистить таблицу».
Площадь правильного и неправильного пятиугольника: как рисовать, упражнения
Для расчета площадь пятиугольника для начала нам нужно определить, регулярно это или нет. Пятиугольник — это многоугольник, замкнутая плоская фигура с пятью сторонами. Когда многоугольник правильный, это означает, что длина его сторон одинакова, а его внутренние углы одинаковы.
В этом случае есть формула для вычисления точной площади правильного многоугольника, зная некоторые из его основных характеристик, которые мы выведем позже.
Если многоугольник не правильный, то есть имеет стороны разных размеров и неравные внутренние углы, единой формулы не существует.
Однако математики нашли методы вычислений, такие как разделение фигуры на другие с меньшим количеством сторон, такие как треугольники, квадраты и прямоугольники, размеры которых легко узнать или вычислить.
Еще одна процедура для вычисления площадей полигонов в целом, зная координаты их вершин, — это метод, называемый Гауссовские детерминанты, о котором мы расскажем позже.
Как найти площадь правильного пятиугольника?
Мы собираемся взять правильный пятиугольник со стороной a и разделить его на 5 равных треугольников, как показано на рисунке, проведя отрезки от центра (красный) до вершин (синий).
В свою очередь, треугольники, как и тот, который выделен желтым справа на рисунке выше, делятся на два равных прямоугольных треугольника благодаря зеленому сегменту, который называется апофема.
Апофема определяется как перпендикулярный сегмент, который соединяет центр многоугольника с центром одной из сторон. Его длина LК.
Площадь прямоугольного треугольника с основанием a / 2 и высотой LК это:
Пентагон состоит из 10 таких треугольников, поэтому его площадь равна:
А = 10 (а / 2) х LК
Но периметр п пятиугольника равно P =10а, поэтому площадь определяется как произведение периметра и длины апофемы:
Площадь правильного пятиугольника, знающая сторону a
Выражая длину апофемы LК как функция стороны a, зная, что указанный угол составляет половину центрального угла, то есть 36º, что эквивалентно:
Методом элементарной тригонометрии через тангенс острого угла 36º:
Подставив в область, выведенную в предыдущем разделе, и зная, что P = 5a:
Площадь правильного пятиугольника, зная его радиус
В радио правильного многоугольника — это отрезок, идущий от центра до одной из его вершин. Он соответствует радиусу описанной окружности, как показано на следующем рисунке:
Пусть R — мера указанного радиуса, которая совпадает с гипотенузой прямоугольного треугольника, выделенного синим цветом на предыдущем рисунке. По тригонометрии:
sin 36º = sin (π / 5) = (a / 2) ÷ R
А = P x LК / 2 = 5р. sin (π / 5) x R. cos (π / 5) = 5R 2 [sin (π / 5) x cos (π / 5)]
Используя формулу двойного угла:
грех (2θ) = 2 греха θ. cos θ
[sin (π / 5) x cos (π / 5)] = (1/2) sin 72º
Итак, подставив это значение, мы получим следующую формулу для площади правильного пятиугольника:
А = (5/2) R 2 .sen 72º
Как рассчитать площадь неправильного пятиугольника?
Как мы уже говорили ранее, для неправильного многоугольника не существует уникальной формулы, но есть два метода, которые обычно работают очень хорошо: первый называется триангуляцией, а второй — методом детерминантов Гаусса.
Триангуляция
Он состоит из деления фигуры на треугольники, площадь которых легче вычислить, или ее также можно проверить с другими фигурами, площадь которых известна, такими как квадраты, прямоугольники и трапеции.
Гауссовские детерминанты
Другой способ найти площадь неправильного пятиугольника или другого неправильного многоугольника — это поместить фигуру в декартову систему координат, чтобы найти координаты вершин.
Зная эти координаты, применяется гауссовский метод определителей для вычисления площади, которая определяется следующей формулой:
Где A — площадь многоугольника, а (xп , Yп ) — координаты вершин. Многоугольник с n сторонами имеет 5 вершин, для пятиугольника это будет n = 5:
Полосы, сопровождающие формулу, представляют собой столбцы модуля или абсолютного значения.
Это означает, что даже если результат операции отрицательный, мы должны выразить его положительным знаком, а если он уже положительный, то его нужно оставить с этим знаком. Это потому, что площадь всегда является положительной величиной.
Процедура названа гауссовскими детерминантами в честь ее создателя, немецкого математика Карла Ф. Гаусса (1777-1855). Указанные операции эквивалентны определителю матрицы 2 × 2, например, первый определитель равен:
Чтобы найти площадь пятиугольника, мы должны решить 5 определителей, сложить результат алгебраически, разделить его на 2 и, наконец, выразить площадь всегда с положительным знаком.
Решенные упражнения
Упражнение 1
Найдите площадь правильного пятиугольника, апофема которого равна 4 см, а сторона — 5,9 см.
Решение
Поскольку это правильный пятиугольник, а у нас есть размеры стороны и апофемы, мы используем формулу, полученную выше:
Периметр P равен 5a = 5 x 5,9 см = 29,5 см.
A = 29,5 см x 4 см / 2 = 59 см 2
Упражнение 2.
Найдите площадь неправильного пятиугольника, как показано. Известны следующие размеры:
Решение
Площадь пятиугольника — это сумма площадей треугольников, которые являются прямоугольниками. В заявлении говорится, что DC ≈ DE, поэтому при применении теоремы Пифагора к треугольнику EDC мы имеем:
EC 2 = 2 ED 2 . Тогда EC = √2.ED.
Треугольники AEC и ABC имеют общую гипотенузу — отрезок AC, поэтому:
EA 2 + EC 2 = AB 2 + BC 2
Поскольку EA и AB измеряют одно и то же, отсюда следует, что:
Поскольку BC = 12, то ED = 12 / √2 = 8,485.
Используя эти значения, мы рассчитаем площадь каждого треугольника и добавим их в конце.
Площадь треугольника EDC
ED x DC / 2 = 8,485 2 / 2 = 36
Площадь треугольника AEC
EA x EC / 2 = EA x √2. ED / 2 = 5 x √2. 8 485/2 = 30
Площадь треугольника ABC
Тогда искомая область:
Это то же самое, что и треугольник AEC, поскольку они оба имеют одинаковые размеры.
Площадь неправильного пятиугольника
Наконец, запрашиваемая площадь представляет собой сумму площадей трех треугольников:
Пятиугольник, виды, свойства и формулы
Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.
Пятиугольник, выпуклый и невыпуклый пятиугольник:
Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.
Пятиугольник – фигура, состоящая из пяти углов (вершин), которые образуются пятью отрезками (сторонами).
Пятиугольник может быть выпуклым и невыпуклым.
Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.
Соответственно выпуклый пятиугольник – это пятиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.
Рис. 1. Выпуклый пятиугольник
Сумма внутренних углов любого выпуклого шестиугольника равна 540°.
Невыпуклый пятиугольник – это пятиугольник, у которого одна часть его точек лежат по одну сторону, а другая часть – по другую от любой прямой, проходящей через две его соседние вершины.
Рис. 2. Невыпуклый пятиугольник
Звёздчатый пятиугольник (пентаграмма) – пятиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого пятиугольника могут пересекаться между собой.
Правильный многоугольник:
Правильный пятиугольник (пентагон) – это правильный многоугольник с пятью сторонами.
В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.
Правильный пятиугольник – это пятиугольник, у которого все стороны равны, а все внутренние углы равны 108°.
Рис. 3. Правильный пятиугольник
Правильный пятиугольник имеет 5 сторон, 5 углов и 5 вершин.
Углы правильного семиугольника образуют семь равнобедренных треугольников .
Правильный пятиугольник может быть построен с помощью циркуля и линейки или вписыванием его в заданную окружность, или построением на основе заданной стороны.
Свойства правильного пятиугольника:
1. Все стороны правильного пятиугольника равны между собой.
2. Все углы равны между собой и каждый угол равен 108°.
Рис. 4. Правильный пятиугольник
3. Сумма внутренних углов правильного пятиугольника равна 540°.
4. Все биссектрисы углов между сторонами равны и проходят через центр правильного пятиугольника O.
Рис. 5. Правильный пятиугольник
5. Количество диагоналей правильного пятиугольника равно 5.
Рис. 6. Правильный пятиугольник
6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр пятиугольника O.
Рис. 7. Правильный пятиугольник
7. Диагонали правильного пятиугольника являются трисектрисами его внутренних углов.
Рис. 8. Правильный пятиугольник
8. Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.
a / c ≈ 5 / 8 ≈ 0,618.
Рис. 9. Правильный пятиугольник
Построение правильного пятиугольника:
Метод построения правильного пятиугольника вписыванием его в заданную окружность:
1. Постройте окружность, в которую будет вписан пятиугольник, и обозначьте её центр как O.
2. Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
3. Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
4. Постройте точку C посередине между O и B.
5. Проведите окружность с центром в точке C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
6. Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F.
7. Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
8. Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
9. Постройте правильный пятиугольник AEGHF.
Формулы правильного пятиугольника:
Пусть a – сторона пятиугольника, r – радиус окружности, вписанной в пятиугольник, R – радиус описанной окружности пятиугольника, S – площадь пятиугольника, h – высота пятиугольника, d – диагональ пятиугольника, Ф – отношение золотого сечения.
Формулы площади правильного пятиугольника:
Формулы высоты правильного пятиугольника:
Формулы стороны правильного пятиугольника:
Формулы диагонали правильного пятиугольника:
Формулы радиуса окружности, вписанной в правильный пятиугольник:
Формулы радиуса окружности, описанной вокруг правильного пятиугольника:
Правильный пятиугольник в природе, технике и культуре:
Пентасимметрию можно наблюдать в некоторых фруктах (например, у мушмулы германской), у иглокожих (например, у морских звёзд) и у некоторых растений.
Исследования формирования водяного льда на ровной поверхности меди при температурах 100-140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.
Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.
Паркет, тротуарная плитка, мозайки и т.п. может выкладываться элементами, которые имеют вид пятиугольников.
Государственный знак качества СССР имеет форму пятиугольника с выпуклыми сторонами.
Расчет площади пятиугольного участка
Площадь пятиугольного участка — это числовая характеристика участка земли, показывающая его размер в квадратных метрах или сотках.
Формула расчета площади пятиугольного участка (по формуле Герона):
S = S1 + S2 + S3
S1, S2, S3 = √(p(p-a)(p-b)(p-c))
S — площадь участка;
S1, S2, S2 — площадь части участка;
p — полупериметр;
a,b,c — длины сторон.
Смотрите также расчеты площадей участков другой формы — виды участков.
Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.
На этой странице представлен самый простой онлайн калькулятор для расчета площади пятиугольного участка в зависимости от длин его сторон. С помощью этого калькулятора вы в один клик сможете вычислить площадь пятиугольного участка.