Как найти средний вес

Расчет средней массы

Средняя масса — это среднее значение массы, измеренное весами или иным измерительным прибором несколько раз.

Формула расчета средней массы:

Mср = (M1 + M2 + M3) / 3

Mср — средняя масса
M1 — первое измерение
M2 — второе измерение
M3 — третье измерение

Быстро выполнить эту простейшую математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета средней массы (по результатам трех измерений) и формула для расчета средней массы. С помощью этого калькулятора вы в один клик сможете вычислить среднюю массу.

Найти средний вес

Имеются три человека: у одного вес x пудов, у второго – y фунтов, у третьего – z кг. Найти средний вес. (Справка: 1 пуд = 40 фунтов = 16,38 кг).

Добавлено через 4 часа 14 минут
Помогите решить, заранее спасибо.

Найти багаж, средний вес одной вещи в котором минимален
Багаж пассажира характеризуется количеством вещей и общим весом вещей. Дан массив, содержащий.

Найти багаж, средний вес одной вещи в котором минимален
Помогите пожалуйста решить задачу((, не могу никак. Завтра сдавать. Спасибо. Багаж пассажира.

Известны вес, пол, рост каждого из 22 человек. Найти общую массу и средний рост мужчин.
Помогите с задачей Известны вес, пол, рост каждого из 22 человек. Найти общую массу и средний.

Тип данных запись: Найти багаж, средний вес одной вещи в котором отличается не более, чем на 0,3 кг от общего среднего веса одной вещи
Найти багаж, средний вес одной вещи в котором отличается не более, чем на 0,3 кг от общего среднего.

Средневзвешенное значение — что это? Как считать средневзвешенное значение?

Что такое средневзвешенное значение и чем оно отличается от среднего значения?

По какой формуле можно посчитать средневзвешенное значение?

Средневзвешанное значение можно частенько встретить в статистике. Итак, разберемся, что же это такое.

Это среднее арифметическое значение, которое еще учитывает вес каждого из слагаемых, для которых и рассчитывается это среднее значение. Задача: Куплены две партии апельсин , причем первая партия – 10 тонн и цена этой партии 700000, тонна стоит 70000, а вот вторая партия – 5 тонн по цене за партию 375000, тонна стоит 75000 ; если посчитать просто среднюю цену закупки , то получится (70000+75000) : 2 = 72500 за тонну. Средневзвешнная же цена более точно показывает нам цену товара с учетом объемов каждой партии равна (10 × 70000) + (5 × 75000) /(10+5) = 71666 за тонну.

Думаю, теперь можно разобраться, что это такое за значение и как считать средневзвешенное значение в конкретном примере

Как вычислить среднее арифметическое взвешенное

Среднее арифметическое — это статистический показатель, иллюстрирующий среднее значение набора данных, который рассчитывается как сумма всех значений, деленная на их количество. Это важный коэффициент, получивший широкое распространение в прикладных науках.

Что такое среднее арифметическое

Суть данного показателя проще всего продемонстрировать на примере. Торговец продает на рынке яблоки. В понедельник ему удалось продать 54 кг, во вторник — 47 кг, а в среду — 61 кг. Торговец хочет спланировать свои продажи и ему интересно, сколько килограмм фруктов он продает в среднем за день. Вот здесь на сцену и выходит среднее арифметическое. Для его определения необходимо суммировать значения показателей и разделить на их количество.

Среднее = (54 + 47 + 61) / 3 = 54 кг

Торговец выяснил, что в среднем он продает 54 кг яблок в день и может грамотно спрогнозировать свои затраты на покупку товара. Так как килограмм яблок стоит 10 рублей, то в день наш коммерсант зарабатывает в среднем 540 рублей.

Среднее арифметическое широко используется в статистике в случаях, если рассматривается набор однородных данных. В нашем случае это были только яблоки. Однако если торговец расширит свой ассортимент и добавит на прилавки еще и апельсины? Как изменится средняя стоимость одной единицы товара?

Пусть в понедельник торговец реализовал 23 кг апельсинов, во вторник — 28 кг, а в среду — 21 кг. Средний уровень продаж апельсинов составит:

Среднее = (28 + 21 + 23) / 3 = 24 кг.

Так как цена одного килограмма цитрусов составляет 20 рублей, то средний доход от продажи апельсинов составит 480 рублей в день.

Теперь решим простую на первый взгляд задачу. Какова средняя стоимость реализации одного килограмма любого товара? Неискушенный аналитик решит эту задачу как:

Среднее = (20 + 10) / 2 = 15 рублей,

за килограмм апельсинов или яблок. Однако не все так просто. В случае с разнородными данными важно учитывать их вес.

Среднее арифметическое взвешенное

Данный показатель используется при расчете среднего арифметического для разных данных, каждое из которых имеет свой вес. Для определения взвешенного параметра необходимо каждое значение умножить на свой вес, суммировать эти произведения, после чего разделить на сумму весов.

В данном случае у нас есть средний вес каждого вида фруктов и его необходимо учесть для определения средней цены одного килограмма товара. На практике это выглядит так:

Среднее взвешенное = (20 × 24 + 10 × 54) / (24 + 54) = 13,07.

Естественно, 13,07 не сильно отличается от 15, однако чем больше слагаемых и больший разброс весов, тем сильнее отличается среднее взвешенное от простого среднего арифметического. Также очевидно, что если все веса равны единице, то среднее взвешенное становится равным среднему арифметическому.

Что выбрать?

Если требуется найти среднее значение одного элемента из однородного набора, то достаточно отыскать среднее арифметическое. Именно это мы делали при поиске среднего уровня продажи яблок или апельсинов за день. Если требуется найти среднее между разными элементами, принадлежащими к разным группам или отыскать среднее средних, то для расчета используется среднее арифметическое взвешенное.

Наша программа представляет собой калькулятор для расчета среднего арифметического и его взвешенного варианта. В меню калькулятора вы можете выбрать тип искомого параметра. Для расчета среднего арифметического вам понадобится ввести только значения параметров. В случае необходимости вы можете добавить дополнительные ячейки.

Для расчета взвешенного среднего выберите соответствующий пункт в меню калькулятора, укажите значения и их вес. Рассмотрим на примерах, как рассчитывать взвешенное значение.

Примеры из реальной жизни

Подсчет средней зарплаты

Пусть на вашем предприятии числятся сотрудники, каждый из которых получает зарплату в соответчики с должностью. Для рекламного проспекта о поиске персонала вы хотите уточнить, на какую среднюю зарплату может рассчитывать соискатель. Вы знаете, что:

  • 10 человек получают зарплату в размере 15 000 рублей;
  • 5 сотрудников — 12 000 рублей;
  • 12 человек — 19 000 рублей;
  • 5 человек — 25 000 рублей;
  • 3 сотрудника — 30 000 рублей;
  • 2 сотрудника — 35 000 рублей.

Для вычисления средней зарплаты на предприятии вам потребуется ввести в ячейки значений размер зарплаты, а в ячейки весов — количество сотрудников, которые ее получают. Калькулятор мгновенно выдаст вам результат, что средняя зарплата равна 19 540 рублей. Без учета веса значений среднее арифметическое было бы равно 22 666 рублей, что уже значительно отличается от взвешенного значения.

Средняя скорость автомобиля

Допустим, водитель ехал по городскому проспекту со скоростью 60 км/ч в течение одного часа. Затем он выехал на автомагистраль, увеличил скорость до 120 км/ч и ехал так три часа, после чего свернул на проселочную дорогу и со скоростью 40 км/ч ехал еще два часа. С какой средней скоростью ехал водитель? В этой задаче в качестве веса выступает время езды, а значений — скорость. Выглядит это так:

  • 60 км/ч — 1 час;
  • 120 км/ч — 3 часа;
  • 40 км/ч — 2 часа.

Введем эти данные в форму калькулятора и получим ответ: средняя скорость автомобиля составляет 83,3 км/ч. Без учета времени средняя скорость была бы равна 73,3 км/ч, что неверно.

Заключение

Расчет среднего арифметического взвешенного широко используется в прикладных науках. Этот параметр популярен не только в статистике, но и в физике, экономике или финансах. Используйте наши калькуляторы в качестве помощника для решения практических и теоретических задач.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *