Как изменится емкостное сопротивление

Последовательная цепь с активным, индуктивным и емкостным сопротивлениями

Конденсатор емкостью C имеет в цепи постоянного тока бесконечно большое сопротивление. Если же приложить к конденсатору переменное напряжение, то он будет периодически перезаряжаться, и в цепи потечет ток. Напряжение на конденсаторе достигает максимального значения в те моменты, когда ток равен нулю.

Если R = 0, то напряжение на конденсаторе совпадает с приложенным напряжением и u = q/C. Мгновенное значение тока определяется выражением:

Емкостное сопротивление - график тока и напряжения

Между напряжением и током имеется разность фаз —π/2.

В чисто емкостной цепи переменного тока ток опережает напряжение на π/2 (или Т/4).

В соответствии с приведенным выше уравнением амплитуда тока Im = ωCUm. Сравнение с законом Ома U = RI показывает, что величина 1/ωС играет роль сопротивления.

Цепь переменного тока, содержащая емкость C, обладает сопротивлением переменному току; оно называется емкостным сопротивлением ХC.

Единица СИ емкостного сопротивления: [XC] = Ом.

ХC емкостное сопротивление цепи переменного тока, Ом
ω = 2πf круговая частота переменного тока, радиан/Секунда
C емкость, Фарад

При увеличении частоты емкостное сопротивление уменьшается. Для постоянного тока (f = 0) оно бесконечно велико.

Ток в цепи, обладающей только емкостным сопротивлением, определяется выражением

Последовательная цепь с активным, индуктивным и емкостным сопротивлениями

Векторная диаграмма и сдвиг фаз. Для того чтобы выяснить явления, происходящие в такой цепи (рис, 10,а), необходимо по­строить ее векторную диаграмму.

Допустим, что XL>XC. Задавшись масштабом тока и отложив вектор последнего, построим вектор общего напряжения U путем геометрического сложения напряжений на отдельных участках це­пи (рис. 10,6). Напряжение на активном сопротивлении всегда совпадает по фазе с током, текущим через него, поэтому, задав­шись масштабом напряжений, откладываем вектор Ua в направле­нии вектора тока. Напряжение на индуктивном сопротивлении опережает ток в нем па 90°, поэтому вектор UL пристраиваем к концу вектора активного напряжения, направив его вверх перпендикулярно вектору тока. Вектор напряжения Uc пристраиваем к концу вектора UL, направив его вниз перпендикулярно вектору тока, так как напряжение на зажимах емкости отстает от тока в ней на 90°. Замыкающая, проведенная из начала первого вектора до конца по­следнего (ОВ), представляет собой сумму этих трех векторов, то есть напряжение на зажимах цепи.

Из векторной диаграммы видно, что напряжение опережает ток на угол φ, причем угол φ получился меньше того, который был бы в цепи при отсутствии в ней емкости (пунктир ОА).

Треугольник ОВС — является треугольником напряжений этой цепи. При рассмотрении его видно, что напряжения находятся в таких же соотношениях, как и в предыдущих случаях, но реактив­ная составляющая Uр, в свою очередь, состоит из двух составляю­щих UL и UС.

Рис. 10. Общий случай последовательной цепи:

а — схема цепи: б, г и е — векторные диаграммы; в и д—треугольники сопротивлений.

Из векторной диаграммы UP=UL- UC = IXL—IXС = I(XL—ХС).

Разделив все стороны треугольника напряжений на величину силы тока, получим треугольник сопротивлений О1 В1 С1 (рис. 10, в).

Из треугольника сопротивлений следует, что результирующее реактивное сопротивление цепи X равно разности индуктивного и емкостного сопротивлений. Емкостное сопротивление как бы ча­стично уничтожает индуктивное, а полное сопротивление цепи

Математическое выражение закона Ома для этого случая остается таким же, как и для предыдущего случая,

Таким образом, анализируя векторную диаграмму и отдельно треугольники напряжений и сопротивлений, мы можем заключить, что когда в последовательной цепи преобладает индуктивное со­противление, то есть XL>XC, то она ведет себя в целом, как цепь индуктивная. Например, если активное сопротивление цепи 20 ом, индуктивное 80 ом и емкостное 30 ом, то цепь можно считать состоящей из активного сопротивления 20 ом и индуктивного 50 ом.

Вычисления активной, реактивной и полной мощностей, актив­ного и реактивного токов, активной и реактивной проводимостей можно проводить так же, как для любой индуктивной цепи,

Если в цепи преобладает емкостное сопротивление (XC>XL_), то на векторной диаграмме вектор UC больше вектора UL; а ре­зультирующее реактивное напряжение Up равно разности емкост­ного и индуктивного напряжений (рис.10,г). В этом случае ток опережает напряжение на некоторый угол φ, и цепь ведет себя как цепь емкостная.

Треугольник сопротивлений можно получить как обычно, раз­делив все стороны треугольника напряжений на величину силы то­ка I (рис. 10. д).

Пример. Последовательно с катушкой, обладающей активным сопротивлением 24 ом и индуктивностью 0,07 гн, включен конденсатор емкостью 79,6 мкф. Определить характер нагрузки, напряжение на ее зажимах, активную мощность и сдвиг фаз, создаваемый этой нагрузкой, если сила тока в катушке 7 а.

Решение. XL=2πfL=2 · 3,14 · 50,0 · 0,07=22 ом;

Так как XC>XL, то нагрузка имеет емкостный характер и ток в ней опережает напряжение на некоторый угол φ.

Напряжение на зажимах цепи U =Iz= 7 · 30 =210в

cos φ = ; <�φ = 36045

Активная мощность цепи

Р = UI cos φ = 210·7·0,8= 1176 вт.

Резонанс напряжений. Особый интерес представляют явления, которые наблюдаются в последовательной цепи при равенстве ин­дуктивного и емкостного сопротивлений (рис.10,е). Из векторной диаграммы видно, что при равенстве индуктивного сопротивлений напряжение на зажимах всей цепи (U) равно на­пряжению на ее активном сопротивлении (Uа) и цепь ведет себя как чисто активная. Это объясняется тем, что при ХL = ХС влияние на цепь индуктивного сопротивления скомпенсировано влиянием емкостного, то есть они как бы полностью взаимно уничтожают друг друга. В результате этого ток в цепи становится максималь­ным, но так как отсутствует лишь влияние индуктивного и емкост­ного сопротивлений, а сами они в цепи имеются, то этот макси­мальный ток проходит и через них, вызывая как в одном, так и в другом падение напряжения (UL и UС).

Явление совпадения по величине падения напряжений на ин­дуктивном и емкостном сопротивлениях в последовательной цепи переменного тока называется резонансом напряжений. В режиме резонанса напряжений

Ток в цепи максимален, так как знаменатель в этом случае минимален. При этом < φ = 0, а соs φ=1.

Таким образом, в режиме резонанса напряжений явления в це­пи протекают так, как будто в ней осталось лишь одно активное сопротивление.

То обстоятельство, что при последовательном подключении ем­кости угол сдвига фаз, созданный индуктивностью, уменьшается (пунктир ОА на рисунке 10,6),, а при XC = XL становится равным нулю, не удается использовать в потребительских установках для уменьшения сдвига фаз, созданного индуктивными токоприемника­ми, так как подключение конденсатора последовательно с токопри­емником сопровождается увеличением тока. Если считать, что до подключения конденсатора ток был номинальным, то после под­ключения он станет больше номинального, что для токоприемника недопустимо, хотя он и будет работать с большим cos φ. Более то­го, в силовых цепях резонанс напряжений — явление опасное. Так при малом активном сопротивлении цепи ток может достигнуть очень большой величины, на которую установка не рассчитана и кроме того, если индуктивное и емкостное сопротивления велики, этот ток вызовет на их зажимах очень большие напряжения (пере­напряжения), в десятки и сотни раз превышающие нормальное ра­бочее, что может привести к пробою диэлектрика емкости и изоля­ции индуктивности.

Пример. В цепь последовательно включены катушка с активным сопротив­лением 10 ом и индуктивностью 300 мгн и конденсатор емкостью 33,8 мкф. Оп­ределить ток в цепи и напряжение на каждом сопротивлении (рис. 10, а). Решение. Индуктивное сопротивление катушки

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *