Доказать что а лежит на прямой оо1

Планиметрия. Страница 3

Эта данная точка называется центром окружности. Расстояние от центра окружности до ее точек называется радиусом окружности.

Отрезок, соединяющий две точки окружности, называется хордой.

Если хорда проходит через центр окружности, то она называется диаметром. (Рис.1)

ОА — радиус
ВС — диаметр
DE — хорда

Окружность, радиус, диаметр, хорда

Рис.1 Окружность, радиус, диаметр, хорда.

2.Окружность, описанная около треугольника

Теорема: центр окружности, описанной около треугольника, является точкой пересечения перпендикуляров, опущенных на середины сторон данного треугольника.

Доказательство. Пусть АВС данный треугольник и точка О является центром окружности, описанной около данного треугольника. (Рис.2) Тогда отрезки ОА, ОВ, ОС равны как радиусы. Следовательно, треугольники Δ АОВ, Δ ВОС, Δ АОС — равнобедренные. А следовательно, и медианы, проведенные к серединам сторон ОК, ОЕ, ОD, являются одновременно биссектрисой и высотой. Поэтому предположение, что центр окружности, описанной около треугольника, является точкой пересечения высот, верно.

Теорема. Окружность, описанная около треугольника

Рис.2 Теорема. Окружность, описанная около треугольника.

3.Окружность, вписанная в треугольник

Теорема. центр окружности, вписанной в треугольник, является точкой пересечения биссектрис, проведенных из его углов.

Доказательство. Пусть дан треугольник АВС. Точка О — центр вписанной окружности. (Рис. 3)

Тогда треугольник Δ АОЕ равен треугольнику Δ АОТ,
Δ СОЕ = Δ СОК,
Δ ВОК = Δ ВОТ.
Так как стороны ОА, ОВ, ОС у них общие. А ОК, ОЕ, ОТ как радиусы.
Следовательно:
∠ ЕАО = ∠ ТАО,
∠ ЕСО = ∠ КСО,
∠ КВО = ∠ ТВО.

Это значит, что точка О лежит на пересечении биссектрис АО, ВО, СО.

Окружность, вписанная в треугольник

Рис.3 Теорема. Окружность, вписанная в треугольник.

4.Геометрическое место точек

Геометрическое место точек это фигура, которая представляет собой совокупность точек на плоскости, подчиняющихся определенному закону или обладающих определенным свойством.

Теорема. Геометрическим местом точек называется прямая, все точки которой равноудалены от двух данных точек, перпендикулярная отрезку, соединяющему эти точки и проходящая через его середину.

Доказательство. Пусть дан отрезок АС. Прямая А проходит через середину этого отрезка и перпендикулярна ему.(Рис. 4).

Тогда треугольники Δ АМВ и Δ СМВ равны. Так как сторона ВМ у них обшая, а стороны АМ и МС равны по условию. Следовательно точка В равноудалена от точек А и С.
Возьмем другую точку, например D, не лежащую на прямой а. Тогда сторона MD не принадлежит прямой а. А следовательно, углы AMD и DMC не равны т.к. не равны треугольники. Данное утверждение основано на том, что через точку, лежащую на прямой, можно провести только одну перпендикулярную ей прямую. И следовательно, расстояния от точки D до точек А и С не равны. Поэтому, для того чтобы расстояния от некой точки Х до двух данных точек были равны, необходимо чтобы она лежала на прямой а, которая перпендикулярна отрезку, соединяющего эти точки, и которая проходит через его середину.

Геометрическое место точек

Рис.4 Теорема. Геометрическое место точек.

Репетитор: Васильев Алексей Александрович

Предметы: математика, физика, информатика, экономика, программирование.

Форма обучения2000 руб / 120 мин — подготовка к ЕГЭ и ГИА для школьников. 3000 руб / 120 мин — индивидуально (базовый уровень). 2000 руб / 120 мин — студенты.

Тел. 8 916 461-50-69, email: alexey-it@ya.ru

Пример 1

Дана окружность с центром О. И проведена касательная а из точки С к этой окружности. Доказать, что точка К лежит на основании равнобедренного треугольника ОВС, если OB = 2R. (рис.5)

Доказательство.

По условию прямая а есть касательная к окружности, следовательно радиус, проведенный к точке касания ОК, и который лежит на прямой с, составляет прямой угол с касательной. Так как ОВ = 2R и KB = R, то прямая а будет представлять собой геометрическое место точек, так как она перпендикулярна отрезку ОВ и проходит через его середину. А следовательно, треугольники ВКС и ОКС равны по первому признаку равенства треугольников. Отсюда можно сделать вывод, что точка К будет лежать на основании равнобедренного треугольника ВОС.

Задача. Дана окружность с центром О.

Рис.5 Задача. Дана окружность с центром О.

Пример 2

Докажите, что касательная к окружности не имеет с ней других общих точек, кроме точки касания. (Рис.6)

Доказательство:

Пусть дана окружность с центром в точке О. И прямая а, которая касается окружности в точке А. Допустим, что прямая а имеет еще одну точку касаная — точку В. Тогда радиус окружности, проведенный к точкам А и В образует угол с прямой а равный 90°.

Таким образом, в равнобедренном треугольнике АОВ углы при вершинах А и В равны 90°. А это невозможно. Следовательно, мы пришли к противоречию и прямая а не может касаться окружности в двух точках.

Касательная к окружности.

Рис.6 Задача. Касательная к окружности.

Пример 3

Точки А,В,С лежат на одной прямой, а точка О лежит вне этой прямой. Докажите, что треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС. (Рис.7)

Доказательство:

Допустим, что треугольники АОВ и ВОС равнобедренные с основаниями АВ и ВС. Тогда Стороны АО, ВО и СО равны. Отсюда следует, что углы ОАВ, АВО, ОВС и ОСВ равны. И ∠АВО = ∠ОВС = 90°, так как эти углы являются смежными, а их сумма равна 180°.

Таким образом, в равнобедренных треугольниках АОВ и ВОС углы при вершинах А и С равны 90°. А это невозможно, потому, что тогда стороны АО, ВО и СО были бы параллельны, так как они перпендикулярны одной прямой АС. Следовательно, мы пришли к противоречию, и треугольники АОВ и ВОС не могут быть равнобедренными с основаниями АВ и ВС.

Даны три точки на прямой.

Рис.7 Задача. Даны три точки на прямой.

Пример 4

Окружности с центрами О и О1 пересекаются в точках А и В. Докажите, что прямая АВ перпендикулярна прямой ОО1 (Рис.8)

Доказательство:

Так как окружности пересекаются в точках А и В, то эти две точки принадлежат обеим окружностям. Следовательно, отрезок ОА = ОВ, как радиусы окружности с центром в точке О. А отрезок О1А = О1В, как радиусы окружности с центром в точке О1.

Таким образом, треугольники ОАО1 и ОВО1 равны по третьему признаку равенства треугольников (по трем сторонам). А следовательно отрезки АС и ВС равны. И прямая ОО1 является геометрическим местом точек для двух данных точек А и В. Т.е. любая точка прямой ОО1 равноудалена от двух данных точек А и В. Следовательно, треугольники ОАС и ОВС равны, также как и треугольники АСО1 и ВСО1 по трем сторонам. А отсюда следует равенство углов при вершине С. Т.е. ∠ОСА = ∠ОСВ = ∠АСО1 = ∠ВСО1 = 90°.

Следовательно, можно сделать вывод, что прямая АВ перпендикулярна прямой ОО1.

Окружности с центрами О и О1.

Рис.8 Задача. Окружности с центрами О и О1.

Пример 5

Отрезок ВС пересекает прямую а в точке О. Расстояние от точек В и С до прямой а равны. Докажите, что точка О является серединой отрезка ВС (Рис.9)

Доказательство:

По условию задачи, расстояния от точек В и С до прямой а равны. Т.е. РС = BQ. Так как расстояние от точки до прямой представляет собой перпендикуляр, то два треугольника РОС и ВОQ, образованные двумя пересекающимися прямыми ВС и а, и перпендикулярами, опущенными на одну из них, равны по второму признаку равенства треугольников ( по стороне и двум прилегающим к ней углам: РС = BQ, углы при вершинах В и С равны как внутренние накрест лежащие, а углы при вершинах Р и Q прямые).

Окружности с центрами О и О1 пересекаются в точках А и В. Докажите что:Треугольник ОАО1=треугольнику ОВО1 ;2)треугольник ОАВ и треугольник О1АВ-равнобедренные.С рисунком нужно .

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

СРОЧНО НУЖНО СДЕЛАТЬ ИЗЛОЖЕНИЕ ПО ТЕКСТУ: В 1553 году главой типографии при Печатном дворе в Москве был назначен Иван Фёдоров.

Иван Фёдоров был и учёным-просветителем, и изобретателем, и художником. Не случайно именно его считают русским первопечатником.

Он сам сконструировал типографский станок, вырезал из дерева красивый славянский шрифт.

Первая русская книга «Деяния святых апостолов» была напечатана 1 марта 1564 года, этот день вошёл в историю как дата рождения первой русской печатной книги. Книга Ивана Фёдорова – настоящий шедевр книжного искусства.

Заставки, концовки, рисунки – всё выполнено на высоком уровне и не уступает западноевропейским изданиям того времени.

Первая книга стала не только церковной, но и учебной – по ней вплоть до XVIII века осваивали грамоту.

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Относительное взаимоположение окружностей.

1. Окружности лежат одна вне другой, не касаясь. В этом случае, очевидно, d > R + R1 .

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d < R + R1 и d > R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

4. Окружности имеют внутреннее касание. В этом случае в d = R — R1, потому что точка касания лежит на продолжении линии OO1.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d < R — R1 (в частном случае в может равняться нулю, т.е. окружности могут иметь общий центр. Такие окружности называются концентрическими).

Обратные предложения.

Так как различные случаи расположения окружностей сопровождаются различными соотношениями между расстоянием центров и величиной радиусов, то обратные предложения должны быть верны, а именно:

1. Если d > R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

3. Если d < R + R1 и в то же время d > R — R1, то окружности пересекаются.

4. Если d = R — R1, то окружности касаются изнутри.

5. Если d < R — R1, то одна окружность лежит внутри другой не касаясь.

Эти предложения легко доказываются от противного.

Например, для доказательства первого предложения рассуждаем так: предположим противное, т.е., что окружности не расположены одна внутри другой. Тогда могут возникнуть 4 случая относительно их взаимного расположения.

Какой бы из этих случаев мы ни взяли, ни в одном из них не будет такой зависимости между расстоянием центров и величиной радиусов, какая нам дана в условии d > R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Доказать что а лежит на прямой оо1

1) Так как прямая а не касается окружности, то она пересекает окружность в двух точках.

ОВ — медиана (т.к. АВ = ВС (по условию)) и высота (т.к. ОВ ⊥ а (по условию)). Значит, ΔАОС — равнобедренный. Таким образом, ОА = ОС и таким образом точка С принадлежит окружности.

2) Пусть прямая а имеет с окружностью только одну общую точку А, но не является касательной, т.е. не перпендикулярна радиусу ОА, таким образом, из точки О можно провести к прямой перпендикуляр ОВ, не совпадающий с ОА. На продолжении отрезка АВ отложим отрезок ВС, равный отрезку АВ. Тогда, из п. 1, точки А и С лежат на окружности. Противоречие, т.к. по условию прямая а имеет с окружностью только одну общую точку.

3) Если две окружности касаются в некоторой точке А, то они имеют общую касательную в этой точке.

Пусть точки О1, О, А не лежат на одной прямой, тогда имеем ΔOO1A. Прямая ОО1 разбивает плоскость на две полуплоскости,

в одной из которых лежит точка А. ΔОО1А = ΔОО1А1 по 1-му признаку. От луча О1О отложим в другую полуплоскость ∠А1О1О = ∠АО1О и на нем отложим отрезок ОА1 = ОА. ОА = ОА1, О1А = О1А1, откуда точка А1 является общей точкой обеих окружностей. Противоречие. По условию окружности имеют только одну точку пересечения. Таким образом, точки О, О1, А лежат на одной прямой.

Через точку А проведем прямую а, а ⊥ ОА. Таким образом, а — касательная к первой окружности. Так как точки О, О1, А лежат на одной прямой, то О1А ⊥ а. Таким образом, а — касательная ко второй окружности. Откуда получаем, что окружности

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *