Что такое спектральная плотность сигнала

Спектральная плотность

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье.

x(t)

Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

X(f)=\int\limits_<-\infty>^ <\infty>x(t)e^ <-i2 \pi f t>dt. » width=»» height=»» /></td> <td style=((1))

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

E_x=\int\limits_<-\infty>^ <\infty>|x(t)|^2 dt = \int\limits_<-\infty>^ <\infty>|X(f)|^2 df.» width=»» height=»» /></td> <td style=((2))

Функция </p> <p>S_x(f)=|X(f)|^2″ width=»» height=»» /> характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.</p> <p><img decoding=

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

S_x(f)=\int\limits_<-\infty>^ <\infty>k_x(\tau)e^ <-i2 \pi f \tau>d \tau.» width=»» height=»» /></td> <td style=((3))

Если существует прямое преобразование, то существует и обратное преобразование Фурье, которое по известной S_x(f)определяет k_x(\tau):

k_x(\tau)=\int\limits_<-\infty>^ <\infty>S_x(f)e^ <i2 \pi f \tau>df.» width=»» height=»» /></td> <td style=((4))

Если полагать в формулах (3) и (4) соответственно f=0и \tau=0, имеем

S_x(0)=\int\limits_<-\infty>^ <\infty>k_x(\tau)d \tau,» width=»» height=»» /></td> <td style=((5))
\sigma_x^2=k_x(0)=\int\limits_<-\infty>^ <\infty>S_x(f)df.» width=»» height=»» /></td> <td style=((6))

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S_x(f)dfможно трактовать как долю энергии, сосредоточенную в малом интервале частот от f-df/2до f+df/2. Если понимать под x(t)случайный (флуктуационный) ток или напряжение, то величина S_x(f)будет иметь размерность энергии [В 2 /Гц] = [В 2 с]. Поэтому S_x(f)иногда называют энергетическим спектром. В литературе часто можно встретить другую интерпретацию: \sigma_x^2– рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S_x(f)называют спектром мощности случайного процесса.

Свойства спектральной плотности

  • Энергетический спектр стационарного процесса (вещественного или комплексного) – неотрицательная величина:
  • Энергетический спектр вещественного стационарного в широком смысле случайного процесса есть действительная и четная функция частоты:
  • Корреляционная функция k_x(\tau)и энергетический спектр S_x(f)стационарного в широком смысле случайного процесса обладают всеми свойствами, характерными для пары взаимных преобразований Фурье. В частности, чем «шире» спектр S_x(f)тем «уже» корреляционная функция k_x(\tau), и наоборот. Этот результат количественно выражается в виде принципа или соотношения неопределенности.

Спектральная плотность сигнала

Пусть интервал разложения сигнала (см. рис. 2.1) стремится к бесконечности. При его увеличении частота = 2п/Т уменьшается до бесконечно малой величины:

Расстояние между спектральными компонентами при этом уменьшается до бесконечно малой величины, а значения превращаются в текущие значения частоты со (см. рис. 2.2). Интервал разложения стремится к бесконечной величине. Это позволяет при вычислении предела ряда Фурье в комплексной форме заменить знак суммы знаком интеграла, основную частоту О)! = 2п/Т — на ?/со, а кратную частоту к(о заменить текущей частотой со:

Интеграл, который записан в скобках выражения (2.13), обозначим

Тогда выражение (2.13) запишется более компактно:

Выражения (2.14) и (2.15) называются соответственно прямым и обратным преобразованиями Фурье. Функция 5(/со) называется

спектральной плотностью. Она является комплексной и имеет размерность [В/Гц], если размерность сигнала и [В].

Преобразование Фурье (2.14) может быть вычислено на основе общих правил интегрирования, если сигнал удовлетворяет условию абсолютной интегрируемости:

Это условие означает, что преобразование (2.14) существует для тех сигналов, площадь под кривой |м(?)| которых ограничена.

К этому классу не относятся, например, периодические сигналы, которые не удовлетворяют условию абсолютной интегрируемости. Однако это не означает, что для периодических сигналов спектральная плотность не может быть вычислена. Методы вычислений, специально разработанные для этих целей, используют так называемые обобщенные функции. Примером обобщенной функции является дельта-функция. Некоторые свойства дельта-функции приведены в приложении 1.

Преобразуем спектральную плотность сигналов, которые удовлетворяют условию абсолютной интегрируемости. Такие сигналы ограничены во времени.

С учетом формулы Эйлера перепишем выражение (2.14): где

Модуль |5(/со)| называется спектральной плотностью амплитуд сигнала или амплитудно-частотной характеристикой

(АЧХ) спектральной плотности сигнала. Функция ср(со) определяет фазо-частотную характеристику (ФЧХ) спектральной плотности сигнала. АЧХ и ФЧХ спектральной плотности являются непрерывными функциями частоты.

Перейдем к анализу спектральной плотности сигналов, не удовлетворяющих условию абсолютной интегрируемости. Такие сигналы не ограничены во времени и имеют бесконечно большую энергию.

На основе сигнала Ц)(?), удовлетворяющего условию абсолютной интегрируемости, построим периодически повторяющийся сигнал

и вычислим его спектральную плотность: где

Размерность спектральной плотности периодически повторяющегося сигнала определяется размерностью спектральной плотности непериодического сигнала, из которого формируется периодически повторяющийся сигнал, т.е. [В/Гц].

Первый сомножитель полученного выражения в равенстве (2.16) определяет спектральную плотность ограниченного во времени сигнала и0(?), второй — спектральную плотность периодически повторяющейся дельта-функции

Убедимся в этом, вычислив указанную плотность:

При вычислении интеграла использовано фильтрующее свойство дельта-функции (см. приложение 1).

Если периодически повторяющуюся дельта-функцию разложить в ряд Фурье в комплексной форме, то се спектральную плотность можно выразить иначе:

При выводе последней формулы использовано выражение дельта-функции в частотной области. Приравнивая выражения спектральных плотностей, получим

Эта функция равна нулю, если со Ф к(х)ь и равна если со = к(о. Подставим в (2.16) новое выражение 5ф(/со):

Спектральная плотность периодически повторяющегося сигнала определяется значениями спектральной плотности ограниченного во времени сигнала г/0(?), отсчитанными через интервал, равный со^ = 2л/Т.

Вычислим значение спектральной плотности ограниченного отрезком времени Т сигнала:

Умножим левую и правую части равенства на коэффициент 2/Т:

где а(/&а>1) — спектр ограниченного во времени сигнала в базисе экспоненциальных функций.

С учетом последней формулы спектральную плотность периодически повторяющегося сигнала запишем в виде

где модуль спектра определяется в базисе экспоненциальных функций формулой (2.9), а спектр фаз — формулой (2.10).

Значения АЧХ и ФЧХ спектральной плотности ограниченного во времени сигнала г/о(0> отсчитанные через интервал (щ = 2п/Т в точках частотной оси кщ, к = 0, ±1, ±2. определяют АЧХ и ФЧХ спектральной плотности этого периодического сигнала.

Рассмотрим некоторые свойства спектральной плотности сигнала, удовлетворяющие условию абсолютной интегрируемости.

  • 1. Спектральная плотность (2.14) — это комплексная и непрерывная функция частоты со, определенная в бесконечном интервале частот.
  • 2. АЧХ и ФЧХ спектральной плотности удовлетворяют уравнениям

где +(л)? — выбранные значения частот.

3. Преобразования Фурье (2.14), (2.15) являются линейными преобразованиями. Поэтому спектральная плотность суммы сигналов равна сумме спектральных плотностей этих сигналов, а сумма сигналов определяется обратным преобразованием Фурье от суммы их спектральных плотностей:

где Uj(t) — i-й сигнал; б’/О’оз) — спектральная плотность г-го сигнала.

4. Спектральная плотность сигнала, ограниченная бесконечно малыми интервалами 2лА/(рис. 2.3) вблизи, например, частот -со0, со(), определяет гармонический сигнал с бесконечно малой амплитудой.

Убедимся в этом, считая, что из-за малости А/ значения спектральной плотности около частот -ю(), (н() равны соответственно S(—jco0) = |А(70)0)| _ — / “ о) и5(усо0) = |5(y’oe0)|e ;(p( — tO(,) . Найдем сигнал по спектральной плотности, приведенной на рис. 2.3:

Спектральная плотность гармонического сигнала с бесконечно малой амплитудой

Рис. 2.3. Спектральная плотность гармонического сигнала с бесконечно малой амплитудой

Поскольку в бесконечно малых интервалах спектральная плотность остается постоянной, можно вынести за знак интегралов выражения |50’со0)|е ;ф(10о) и |50’м0)|е — — ,ф(а)о) :

Как следует из полученной формулы, амплитуда полученного сигнала определяется значением спектральной плотности, функцией (бшл — )/^ и весьма малым диапазоном частот А/. При стремлении Д/ к нулю функция (81пх)/х стремится к единице, а амплитуда становится равной нулю.

5. Если все составляющие спектральной плотности ограниченного во времени сигнала сдвигаются по фазе на +(л)?о> то этот сиг- нал сдвигается во времени на величину +?0. Действительно:

6. При передаче ограниченного во времени сигнала через линейный четырехполюсник, АЧХ которого в полосе пропускания равна постоянной величине К0, а фазовая характеристика ср(со) = = -а)?0> форма этого сигнала остается неизменной, а сигнал запаздывает во времени на величину ?0:

Пример 2.2. Рассчитать спектральную плотность задержанного во времени одиночного прямоугольного импульса с длительностью ти и амплитудой А, ее АЧХ и ФЧХ.

Решение. Спектральная плотность задержанного на время ?0 импульса равна

где м(?) — импульс, который расположен в начале координат;

Вычисления дают следующий результат:

Запишем эту плотность в виде где

Последнее выражение определяет спектральную плотность сигнала и(?). В диапазоне частот [2я/ти] спектральная плотность является положительной величиной, д(со) = = 1. Поэтому в этом диапазоне фазовая характеристика ф(со) = 0, так как ,ф(со) = -1, и т.д.

АЧХ спектральной плотности задержанного импульса совпадает с АЧХ спектральной плотности сигнала «(?), а ФЧХ определяется выражением

Спектральная плотность прямоугольного импульса г/(?), АЧХ и ФЧХ этой плотности изображены на рис. 2.4.

Спектральная плотность, АЧХ и ФЧХ спектральной плотности прямоугольного импульса

Рис. 2.4. Спектральная плотность, АЧХ и ФЧХ спектральной плотности прямоугольного импульса

Пример 2.3. Вычислить спектральную плотность кодированного сигнала

где ак — элементы кодового слова, равные -1 или 1, т.е. = +1, и0(0 — прямоугольный импульс с амплитудой А и длительностью ти.

Решение. Применим формулу (2.14):

После замены переменной , получим

Пример 2.4. Вычислить спектральную плотность периодического сигнала, записанного в виде ряда Фурье в тригонометрической форме [см. формулу (2.11)]. Записать выражения АЧХ и ФЧХ постоянной, синусной и косинусной составляющих этого ряда.

Решение. Функции, определяющие формулу (2.11), — периодические, за исключением постоянной составляющей. Эту составляющую аппроксимируем периодической косинусной функцией с частотой, которая стремится к нулю:

Вычислим спектральную плотность периодического сигнала u(t) = = a cos fit, записав его в виде

где

Спектральная плотность сигнала щ(():

Значение первого слагаемого, стоящего в скобках выражения, равно 1, если со = -Q, и равно 0 для других дискретных значений частоты со = kfl, k = 0, 1, ±2, ±3, ±4, . Значение второго слагаемого равно 1, если со = Q, и равно 0 для других дискретных значений частоты to = kQ, k = 0, -1, ±2, ±3, ±4, . Учитывая это, найдем спектральную плотность, АЧХ и ФЧХ спектральной плотности периодического сигнала u(t) = a cos Q?:

Значения АЧХ спектральной плотности в точках частотной оси со = +?2 равны паТ/(2п) = аТ/2.

Значения ФЧХ спектральной плотности гармонического сигнала в точках частотной оси со = равны 0.

По формуле спектральной плотности косинусоидального сигнала можно найти спектральную плотность постоянной составляющей:

АЧХ спектральной плотности постоянной составляющей определяется значением

Вычисление спектральной плотности синусоидального сигнала аналогично вычислению спектральной плотности косинусоидального сигнала.

Запишем периодический сигнал u(t) = bsinQ? в виде

где

Спектральная плотность сигнала и0(О :

По найденному выражению найдем спектральную плотность периодического сигнала u(t) = b sin Qt:

АЧХ спектральной плотности этого сигнала в точках частотной оси со = +П:

Значения ФЧХ спектральной плотности сигнала в точках частотной оси со = +П равны -я/2, п/2.

Полученные формулы для спектральных плотностей гармонических сигналов позволяют найти спектральную плотность суммы этих сигналов:

где — модуль спектра, равный амплитуде гармонического

сигнала; ф(П) = -экЛ%(Ь/а) — значение фазы спектра, равное значению начальной фазы этого сигнала.

Ряд Фурье в тригонометрической форме (2.11) содержит бесконечно большое число сумм гармонических сигналов:

Спектральная плотность этой суммы находится по последнему выражению спектральной плотности заменой П = ко)^. Используя эту формулу и формулу спектральной плотности постоянной составляющей, получим выражение спектральной плотности сигнала, записанного в виде ряда Фурье в тригонометрической форме:

где — модуль спектра; ф^о^) = — значение фазы спектра, равное значению начальной фазы гармонического сигнала.

Для периодической последовательности импульсов, приведенной на рис. 2.1,

Спектральная плотность

Вычисленная спектральная плотность является математической моделью периодически повторяющегося видеоимпульса прямоугольной формы в частотной области. График спектральной плотности показан на рис. 2.5. Дельта-функции на этом рисунке условно изображены стрелками.

Спектральная плотность периодической последовательности

Рис. 2.5. Спектральная плотность периодической последовательности

График содержит информацию о постоянной составляющей и гармонических сигналах, входящих в ряд Фурье в тригонометрической форме.

Пример 2.5. По спектральной плотности, вид которой приведен на рис. 2.6, вычислить выражение для сигнала «(?)•

Спектральная плотность сигнала

Рис. 2.6. Спектральная плотность сигнала

Решение. Спектральная плотность сигнала ограничена значениями частоты, равными -сов, сов. Найдем сигнал:

Энергетические характеристики сигналов. Спектральная плотность энергии

Пусть дан некоторый сигнал , который характеризует изменение напряжения или силы тока во времени. Тогда будет определять мгновенную мощность, выделяемую на сопротивлении 1 Ом.

Таким образом, периодические сигналы, повторяющиеся на всей оси времени мы можем характеризовать конечной средней мощностью , поскольку их энергия бесконечна. Непериодические сигналы характеризуются конечной энергией , потому что их средняя мощность на всей оси времени равна нулю.

Выражения (1)–(3) справедливы и для комплексного сигнала . В этом случае, мгновенную мощность можно определить как .

Пусть даны два сигнала и , в общем случае комплексные. Скалярным произведением сигналов называется величина равная:

Заметим, что скалярное произведение сигнала с самим собой возвращает энергию данного сигнала:

Подставим в (4) вместо обратное преобразование Фурье его спектральной плотности . Тогда:

связывающее среднюю мощность периодического сигнала. Для непериодических сигналов мы можем получить аналогичное равенство энергии сигнала во времени и в частотной области. Для этого в обобщенную формулу Рэлея подставим и получим:

Если в выражениях (7)–(9) использовать частоту , выраженную в герц, вместо циклической частоты , измеряемой в единицах рад/c, то и множитель сокращается:

было введено понятие спектральной плотности сигнала и была приведена аналогия поясняющая понятие спектральной плотности, и ее отличие от спектра периодического сигнала.

Из равенства (9) следует, что энергия сигнала может быть представлена как интеграл по всей оси частот:

Сделаем важное замечание. Спектральная плотность энергии игнорирует ФЧХ сигнала. Тогда можно заключить, что одной и той же спектральной плотности энергии могут соответствовать множество различных сигналов, имеющих одинаковую АЧХ и различные ФЧХ.

и на практике анализ поведения убывающей спектральной плотности с ростом частоты имеет важное значение. Однако графический анализ бывает затруднителен ввиду высокой скорости убывания спектральной плотности по частоте, а в случае спектральной плотности энергии затруднителен вдвойне, поскольку возведение АЧХ в квадрат только ускоряет убывание. Поэтому широкое распространение получило представление спектральной плотности энергии в логарифмическом масштабе, выраженной в единицах децибел (дБ):

В качестве примера на рисунке 1 приведены спектральные плотности энергии прямоугольного, треугольного, двустороннего экспоненциального и гауссова импульсов в линейном и логарифмическом масштабе.

Как видно из рисунка 1а, спектральные плотности энергии импульсов в линейном масштабе практически сливаются и очень сложно различимы.

Логарифмическая шкала представления спектральной плотности энергии оказывается удобной при сравнении характеристик сигналов. Если энергии двух сигналов отличаются в 100 раз, то в логарифмической шкале отношение их энергий составляет 20 дБ. Если же энергии отличаются в 1000000 раз, то в логарифмической шкале это соответствует 60 дБ. Удвоение энергии сигнала, в логарифмической шкале соответствует прибавлению 3 дБ.

В данном разделе мы рассмотрели энергетические характеристики периодических и непериодических сигналов. Мы показали, что периодические сигналы имеют бесконечную энергию, но конечную среднюю мощность. Средняя мощность непериодических сигналов стремится к нулю, а их энергия конечна.

Было введено понятие скалярного произведения сигналов и получена обобщенная формула Релея,связывающая скалярное произведение во временной и частотной областях.

Установлено равенство Парсеваля для непериодических сигналов, как частный случай формулы Релея.

Введено понятие спектральной плотности энергии как квадрата модуля спектральной плотности сигнала. Также рассмотрено представление спектральной плотности энергии в линейном и логарифмическом масштабе для различных сигналов.

Спектральная плотность и ее свойства. Теоремы о спектрах

Спектральная плотность и сигнал связаны между собой парой преобразований Фурье:

Все свойства спектральной плотности объединены в основных теоремах о спектрах.

I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём ,…, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

Здесь — произвольные числовые коэффициенты.

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие . Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как . Введём замену переменной: . Тогда ,

Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена фазовом спектре.

III. Теорема масштабов.

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная (- некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0<<1, то сигнал “растягивается” во времени. Если , то :

Произведём замену переменной , тогда , откуда следует:

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени ( т.е. при <1) имеет место сужение спектра и увеличение модуля спектральной плотности.

IV. Теорема о спектре производной и неопределённого интеграла.

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность .

Преобразование Фурье — линейная операция, значит, равенство (2.3) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

Представляя экспоненциальную функцию рядом Тейлора:

подставляя этот ряд в (2.6) и ограничиваясь первыми двумя членами ряда, находим

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель . Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции. Интеграл это есть, значит — его спектральная плотность, а из формулы (2.7) равна:

Таким образом, множитель служит оператором интегрирования в частотной области.

V. Теорема о свёртке.

При суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и — два сигнала, для которых известны соответствия ,. Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.9):

Изменив порядок интегрирования, будем иметь:

Интеграл, стоящий в правой части называют свёрткой функций и . Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей:

Операция свёртки коммутативна, т.е. допускает изменения порядка следования преобразуемых функций:

Теорема о свёртке может быть обращена: если спектральная плотность некоторого сигнала представляется в виде произведения , причём

и , то сигнал является свёрткой сигналов и , но уже не в частотной, а во временной области:

Пусть два сигнала и , в общем случае комплексные, определены своими обратными преобразованиями Фурье:

Найдём скалярное произведение этих сигналов, выразив один из них, например , через его спектральную плотность:

Здесь внутренний интеграл представляет собой спектральную плотность сигнала поэтому:

Скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *