Vox axt что за формула

Определение координаты движущегося тела (9 класс)

Как определить координаты движущегося тела? Для этого необходимо знать такие понятия, как механическое движение, пройденный путь, скорость, перемещение.

Определение координаты движущегося тела (9 класс)

Механическое движение

При механическом движении происходит изменение положения тела в пространстве относительно других тел за промежуток времени. Оно бывает равномерным и неравномерным.

Равномерное движение

При равномерном движении тело за равные промежутки времени проходит одинаковые расстояния (т.е. движется с постоянной скоростью).

Путь, пройденный при равномерном движении равен: Sx=Vxt=x-xо

Следовательно, при равномерном движении координата тела изменяется по следующей зависимости:

Определение координаты движущегося тела (9 класс)

Рис. 1. Формула координаты тела при прямолинейном равномерном движении

  • – начальная координата тела;
  • X – координата в момент времени t;
  • Vx – проекция скорости на ось X.

Неравномерное движение

Неравномерное движение – движение, при котором тело за равные промежутки времени проходит неодинаковые расстояния (движется с непостоянной скоростью), то есть движется с ускорением.

Если тело движется неравномерно, то скорость тела в разные моменты отличается не только по величине, но и (или) по направлению. Средняя скорость тела при неравномерном движении определяется по формуле: V (ср)= S (весь)/t (весь)

Ускорение – величина, показывающая, как изменяется скорость за 1 секунду.

Определение координаты движущегося тела (9 класс)

Рис. 2. Формула ускорения

Следовательно, скорость в любой момент времени можно найти следующим образом:

V=Vо+at

Если скорость с течением времени увеличивается, то a больше 0, если скорость с течением времени уменьшается, то a меньше 0.

Как найти путь при равноускоренном движении?

Определение координаты движущегося тела (9 класс)

Рис. 3. Прямолинейное равноускоренное движение

Пройденный путь численно равен площади под графиком. То есть Sx=(Vox+Vx)t/2

Скорость в любой момент времени равна Vx=Vox+axt, следовательно Sx=Voxt+axt2/2

Так как перемещение тела равно разности конечной и начальной координат (Sx=X-Xo), то координата в любой момент времени вычисляется по формуле X=Xo+Sx, или

Движение тела по вертикали

Если тело движется по вертикали, а не по горизонтали, то такое движение всегда является равноускоренным. Когда тело падает вниз, то падает оно всегда с одинаковым ускорением – ускорением свободного падения. Оно всегда одинаковое: g=9,8 м/кв.с.

При движении по вертикали формула скорости приобретает вид: Vy=Voy+gt,
где Vy и Voy – проекции начальной и конечной скоростей на ось OY.

Координату же можно рассчитать по формуле: Y=Yo+Voyt+gt2/2

Движение тела по окружности

При движении по окружности численное значение скорости может и не изменяться, но поскольку обязательно изменяется направление, то движение по окружности – это всегда равноускоренное движение.

Что мы узнали?

Тема «Определение координаты движущего тела», которую изучают в 9 классе, поможет ученикам систематизировать информацию о том, что движение может быть равномерным и неравномерным. Так же для того чтобы знать пройденный путь, нужно выбрать тело отсчета и использовать прибор для отсчета времени.

Учитель физики, информатики и вычислительной техники. Победитель конкурса лучших учителей Российской Федерации в рамках Приоритетного Национального Проекта «Образование».

§ 6. Скорость прямолинейного равноускоренного движения. График скорости

Вам известно, что при прямолинейном равноускоренном движении проекцию вектора ускорения на ось X можно найти по формуле:

Выразим из этой формулы проекцию vx вектора скорости v, которую имело движущееся тело к концу промежутка времени t, отсчитываемого от момента начала наблюдения, т. е. от t0 = 0:

Если в начальный момент тело покоилось, т. е. v0 = 0, то для этого случая последняя формула принимает вид:

Представим зависимость проекции вектора скорости от времени при равноускоренном движении в виде графика.

Из курса математики вам известна линейная функция у = kx + b, где х — аргумент, k — постоянный коэффициент, b — свободный член. Графиком этой функции является прямая.

Функция vx = v0x + axt (или, что то же самое, vx = axt + v0x) тоже линейная с аргументом t, постоянным коэффициентом ах и свободным членом v0x. Значит, графиком этой функции тоже должна быть прямая. Расположение этой линии по отношению к осям координат определяется значениями ах и v0x.

Построим, например, график зависимости от времени проекции вектора скорости разгоняющегося перед взлётом самолёта, который движется из состояния покоя прямолинейно с ускорением 1,5 м/с 2 в течение 40 с.

Сонаправим ось X со скоростью движения самолёта. Тогда проекции векторов скорости и ускорения будут положительны.

Для построения заданной прямой достаточно знать координаты (т. е. t и vx) двух любых её точек. Задав два произвольных значения t, по формуле vx = axt можно определить соответствующие значения vx. Например, при t0 = 0 v0x = 0; при t = 40 с vx = 1,5 м/с 2 • 40 с = 60 м/с. По координатам первой из найденных точек видно, что график зависимости скорости от времени пройдёт через начало координат (рис. 10).

График функции

Рис. 10. График функции vx = 1,5t(м/с)

Теперь построим аналогичный график для случая, когда начальная скорость не равна нулю (при том, что модуль скорости, как и в предыдущем примере, возрастает). Для этого воспользуемся таким примером.

По дороге едет автомобиль со скоростью 10 м/с (36 км/ч). Водитель автомобиля, увидев дорожный знак, снимающий ограничение скорости, нажал на педаль газа, в результате чего автомобиль стал двигаться с постоянным ускорением 1,4 м/с 2 . Построим график зависимости от времени проекции вектора мгновенной скорости на ось X, сонаправленную со скоростью прямолинейно движущегося автомобиля, для первых четырёх секунд разгона.

В этом случае зависимость vx (t) описывается формулой vx = v0x + axt. Найдём по этой формуле координаты двух произвольных точек графика. Например, при t0 = 0 v0x = 10 м/с; при t = 3 с vx = 10 м/с + 1,4 м/с 2 • 3 с = 14,2 м/с.

График, построенный по этим точкам, представлен на рисунке 11. Он отсекает на оси vx отрезок, равный проекции вектора начальной скорости.

График функции

Рис. 11. График функции vx = 10 + 1,4t(м/с)

Построим теперь график зависимости проекции вектора скорости от времени, если начальная скорость не равна нулю, а модуль вектора скорости уменьшается с течением времени.

Допустим, водитель автомобиля, движущегося со скоростью 20 м/с (72 км/ч), нажимает на педаль тормоза. В результате автомобиль движется с ускорением 2 м/с 2 и через 10 с останавливается.

За начало отсчёта времени примем момент начала торможения, когда скорость автомобиля ещё была равна 20 м/с.

В этом случае нет необходимости рассчитывать значение проекции вектора скорости, поскольку координаты двух точек графика очевидны: при t0 = 0 v0x = 20 м/с; при t = 10 с vx = 0. Соответствующий график представлен на рисунке 12.

График функции

Рис. 12. График функции vx = 20 — 2t(м/с)

Поскольку скорость уменьшается по модулю, то график образует с положительным направлением оси t тупой угол.

Равноускоренное движение: формулы, примеры

Равноускоренное движение — это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение — частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Равноускоренное движение

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y — равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формулы для равноускоренного движения

Формула для скорости при равноускоренном движении:

Здесь v 0 — начальная скорость тела, a = c o n s t — ускорение.

Покажем на графике, что при равноускоренном движении зависимость v ( t ) имеет вид прямой линии.

Формулы для равноускоренного движения

​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v — v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = — 2 м с ; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с ; a = — 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + ( v — v 0 ) 2 t .

Мы знаем, что v — v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения — нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 — v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Vox axt что за формула

Перемещение

Перемещение тела (материальной точки) – это вектор, соединяющий начальное положение тела с его последующим положением.

Существует большая разница между путем и перемещением. Путь может быть и по прямой, и по извилистой линии, может быть и круговым. Допустим, во всех этих случаях длина пути одинаковая. Очевидно, что расстояние между началом и концом пути будет разным. То есть тело может преодолеть путь длиной в 20 км и при этом переместиться от начальной точки всего на 2 км, на 20 метров или вообще не переместиться (если тело двигалось по кругу, то оно, пройдя круг, вернулось к исходной точке).

Путь – скалярная величина, то есть величина, не имеющая направления.

Перемещение – векторная величина, то есть величина, имеющая направление.

Как и путь, перемещение измеряется в метрах, километрах, сантиметрах и т.д.

Перемещение при прямолинейном равномерном движении.

Формула перемещения для прямолинейного равномерного движения:

→ →
s = v · t

где v – проекция скорости, t – время.

Но для расчета перемещения применяют формулу, в которую входят проекции векторов на ось:

sx = vxt

где vx – проекция скорости, t – время.

Перемещение тела при прямолинейном равноускоренном движении.

Формула 1:

v0x + vx
S = ———— · t
2

где t – время, v0x – проекция начальной скорости, vx – проекция скорости в конце промежутка времени t.

Формула 2:

Поскольку vx = v0x + axt, а S = sx, то формула 1 может иметь и такой вид:

axt 2
sx = v0xt + ——
2

Перемещение тела при прямолинейном равноускоренном движении без начальной скорости.

Если начальная скорость v0 равна нулю, то предыдущая формула закономерно обретает следующий вид:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *