Vddcr cpu switching frequency сколько ставить

Vddcr cpu switching frequency сколько ставить

В данной теме обсуждаются CPU линейки AMD Ryzen 1X00-3Х00!
DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 DDR4 и Ryzen. Нюансы настройки и разгона памяти на платформе AMD AM4 Windows 1903: новый планировщик? буст производительности? вся правда без регистрации и смс Гайд по разгону ОЗУ на процессорах семейства Ryzen: В процессе Разумные пределы частот для ZEN 1 и ZEN+: Начнем с того, что зависимость частоты от напряжения не является линейной функцией.То-есть наступает момент, когда с последующими 50 или 100Мгц мы можем получить 50 или даже 70Вт дополнительно тепла. На следующей картинке изображена зависимость потребления от частоты.
Зображення
В большинстве разумный разгон для пколений ZEN 1 и ZEN+ будет выглядеть следующим образом:
ZEN 1 от 3700 до 3800Мгц , ZEN + от 3800 до 4000Мгц.
Чем обусловлена эта разница? техпроцессом. Пример сравнение ZEN 1 и ZEN+ ниже.
ЗображенняПочему процессор не гонится дальше: Многие из вас сталкивались с проблемой, когда процессор с определенным разгоном работает в одних задачах,но не работает в других.Вроде и напряжение небольшое,но что-то не дает ему быть «стабильным».
Ваш процессор состоит из чиплетов (CCD), чиплет состоит из комплексов (ССX), которые в свою очередь состоят из ядер (обычно это 4 ядра).
Ввиду того что не бывает двух кремневых изделий с идентичными вольт-частотными характеристиками возникает ситуация, когда некоторым ядрам напряжения уже достаточно, а другим очень мало. В таких случаях дабы достичь желаемой частоты вам придется изрядно навалить напряжения, что приведет к существенному росту TDP либо дочитать эту статью до конца. Пример, удачное и худшее ядро на 2700Х

для одинаковой частоты, а если быть точным 4,35ггц самому удачному ядру потребуется 1,35в, а худшему 1,45. Разница в 0,1в, что уже много.
Что же делать? спуститься на 100мгц ниже. На 4,25ггц картина может кардинально изменится и разница будет составлять, к примеру 0,05 вольт. Как правильно выставить напряжение для процесса (разгон): 0) имеем всю систему в авто (дефолте)
1) выбрали например частоту 3,8 (множитель 38) для разгона
2) подбираем напряжение на процессор минимальное с которым система запустится в виндовс, крутим CPU Core Voltage точка отсчета для 3,8Ггц у нас 1,28V для Ryzen GEN 1 , и 1,15 V для Ryzen GEN +
3) если получили старт успешный виндовса возвращающемся в биос, переключаемся с CPU Load-line Calibration [auto] в CPU Load-line Calibration [Level 2] загружаемся в виндовс и делаем прогон теста LINX и скорее всего ловим BSOD или Black Screen. Обратите внимание , что у некоторых фирм, таких как MSI LLC нумеруется в обратную сторону, LLC 1 будет давать компенсацию больше чем LLC2
4) возвращаемся в биос ,добавляем шаг на LLC и оно выглядит уже как CPU Load-line Calibration [Level 3] заходим в виндовс и запускаем LINX и скорее всего ловим варианые стопы или невязки
5) снова идем в биос и наращиваем на 1 шаг наверх теперь наше напряжение CPU Core Voltage плюсиком на клавиатуре, заходим в виндовс, тестим LINX
6) если не помогло избавиться от невязок/стопов в пункте 5, повторяем его еще раз процедуру (добавляем еще напряжение CPU Core Voltage на шаг наверх )

таким образом мы настраиваем Idle напряжение и оставляем наши позитивные/негативные пики создаваемые LLC в пределах нормы, чтоб не вызвать перевольтаж при падении нагрузки и черный экран в простое Максимально допустимые температуры/напряжения:

Виды разгона AMD Ryzen. Тест Ryzen 7 3700X на ASRock X570 Extreme 4

Процессоры с разблокированным множителем всегда ценились энтузиастами. Увеличение их частоты путем несложных манипуляций давало возросшую производительность, сравнимую с показателями старших моделей в линейке.

Но на сегодняшний день ситуация с разгоном изменяется не в лучшую сторону для пользователей. В конкурентной борьбе производители стараются изначально выжать максимум из чипов.

Да и нужен ли ручной разгон на современной платформе? Процессоры стали намного интеллектуальнее за последние пару лет. Они умеют разгонять себя сами – технологии Turbo Boost у intel и Precision Boost Overdrive (PBO) у AMD. В отличии от ручного разгона, данные технологии работают по алгоритму, основанному на множестве датчиков – учитываются показатели напряжений, энергопотребления, температуры.

Особенно в этом преуспела компания AMD с выходом архитектуры Zen 2. Давайте рассмотрим способы разгона процессоров Matisse на примере Ryzen 7 3700X. Оценим их возможности и обсудим актуальность разгона как такового.

А вот тут, кстати, наш гайд по разгону процессоров AMD Ryzen.

Тестовый стенд

  • Процессор: AMD Ryzen 7 3700X;
  • Материнская плата: ASRock X570 Extreme 4, BIOS v 2.30 от 16.03.20;
  • Оперативная память: XPG Spectrix D80 DDR4 RGB Red Edition AX4U320038G16-DR80;
  • Охлаждение CPU: Thermaltake Pacific RL240 Water Cooling Kit;
  • Блок питания: Enermax Platimax D.F. 750W;
  • Накопитель: Goodram PX500 NVMe PCIe Gen 3 ×4 на 512 ГБ;
  • Операционная система: Windows 10 Pro 64-bit версия 2004.

Настройки DIGI + VRM Ryzen 2600.

Эти настройки важны при подготовке к разгону вашего процессора и оперативной памяти. Для этого руководства важны только настройки ЦП, но есть небольшой пробег для домена SoC для разгона памяти. Одно важное замечание здесь, что калибровка линии нагрузки (LLC) установлена ​​на уровень 4 с максимальным уровнем 5. Это означает, что есть небольшое Vdroop под нагрузкой с уровнем 4, уровень 3 и ниже будет создавать еще больший Vdroop для этого конкретного VRM. .

VDDCR CPU Current Capability до 130%, короче говоря, сколько энергии он может потреблять по сравнению с базовым уровнем от 100% до 130%.

Автоматический разгон

Автоматический разгон, или Boost, у AMD лимитируется несколькими параметрами:

  • PPT Limit (Package Power Tracking) – ограничение на потребление процессором энергии в ваттах, при превышении TDP частоты уменьшаются.
  • TDC Limit (Thermal Design Current) — ограничение на максимальный ток, подаваемый на процессор. Определяется эффективностью охлаждения VRM на материнской плате.
  • EDC Limit (Electrical Design Current) – ограничение на максимальный ток, подаваемый на процессор. Определяется электрической схемой VRM на материнской плате.
  • Precision Boost Overide Scalar – коэффициент зависимости подаваемого на процессор напряжения от его частоты. При отключении трех выше приведенных параметров данный ограничитель спасает процессор от выхода из строя, ограничивая подаваемое напряжение. Для одного ядра и для всех ядер этот показатель различается. В нашем случае при максимальном значении Scalar ×10 с отключенными ограничениями максимальное напряжение на одно ядро составило 1.49 В.

Как видим, авторазгон зависит не только от экземпляра процессора, но и от материнской платы, а конкретно от её схемы питания VRM, её охлаждения, а также от эффективности охлаждения самого CPU.

Учитывается не только общая пиковая мощность чипа, но и индивидуальные характеристики каждого ядра: его частотный отклик на напряжение, тепловые взаимодействия между соседними ядрами, ограничения по мощности для каждого ядра.

В автоматическом разгоне максимальная частота на 1-3 ядра была 4400 МГц, четыре ядра, восемь потоков работали с максимальной частотой 4275 МГц, при 100% нагрузке на всех потоках все ядра работали на частоте 3949 МГц. Максимальное энергопотребление составило 90 Вт с наибольшим напряжением от 1.18 до 1.49 В. В стресс-тесте LinX температура поднялась до 68°C.

В однопоточном режиме максимальная частота достигает заявленной в технических характеристиках Ryzen 7 3700X. В многопоточном режиме авторазгон прибавляет 12% к базовой частоте процессора.

Boost: история технологии, изменившей представление о беговых кроссовках Boost: история технологии, изменившей представление о беговых кроссовках Кроссовки Ultraboost 19

Усиленная амортизация.

В основе инновационной технологии BOOST™ от adidas — революционный амортизирующий материал. При поддержке BASF, ведущей мировой химической компании, adidas добилась невозможного: твердые гранулы термопластика (TPU) в буквальном смысле надуваются и превращаются в тысячи маленьких энергосберегающих капсул, образуя оригинальную промежуточную подошву. Благодаря своей уникальной структуре в виде ячеек эти энергетические капсулы аккумулируют и высвобождают энергию при каждом шаге. Тесты, проведенные подразделением adidas по инновациям, показывают, что чрезвычайно износостойкий материал, который используется только в продукции BOOST™, обеспечивает самый высокий уровень энергоотдачи в беговой индустрии. «adidas стремится создавать инновационные продукты, которые помогают спортсменам добиваться лучших результатов. Технология BOOST™ — это революция в области амортизации, обеспечивающая самый высокий уровень возврата энергии в отрасли, — говорит Эрик Лиедтке, глава Sport Performance. — Одним словом, Boost – это великолепная беговая обувь следующего поколения. С ней мы изменим беговую индустрию». «BOOST™ — это материал будущего, который сочетает функциональные преимущества: с одной стороны, мягкость и комфорт и адаптивную амортизацию, с другой стороны. Это становится залогом самого комфортного бега в истории. Вы сразу почувствуете все преимущества обуви с инновационной технологией adidas, только надев ее. BOOST™ устанавливает новые стандарты не только для беговой обуви, но и для развития всей индустрии и продукции», — добавляет Бернд Валер, директор по инновациям компании adidas.

Ручная установка множителя

Это самый популярный способ разгона процессоров, не требующий особых знаний, известен много лет, именно он используется в основном для разгона процессоров intel. Подходит для процессоров Ryzen без суффикса Х.

Заходим в BIOS, ищем вкладку или параметр OC Tweaker. Значение CPU Frequency переводим в ручной режим. Изменять будем два параметра: множитель и напряжение.

По умолчанию для нашего процессора эти показатели равны 36 и 1.1 В. Постепенно изменяем множитель на единицу, сохраняемся, загружаем Windows и тестируем стабильность работы. При невозможности загрузки ОС или ошибках в тестах, увеличиваем напряжение. Безопасным считается диапазон напряжения до 1.45 В.

Необходимо учесть, что при включении ручного режима изменения множителя, динамическое изменение частоты отключается, все ядра будут работать на выставленной вручную частоте, не снижая ее без нагрузки. Напряжение при этом будет изменяться в зависимости от нагрузки.

В результате нам удалось поднять частоту всех ядер до 4.3 ГГц с напряжением 1.42 В. На данной частоте система работала стабильно, проходила все тесты без ошибок.

На частотах 4.4 и 4.45 ГГц Windows загружалась, но в тестах были ошибки, и система работала не стабильно. Повышение напряжения не помогало.

Приведем график зависимости роста напряжения от частоты, изменения температуры под нагрузкой и энергопотребления.

Как видим, до 4.2 ГГц напряжение изменяется незначительно и температуры достаточно низкие. Но уже на 4.3 ГГц температура и энергопотребление значительно возрастают.

Что получаем в итоге? Все ядра при 100% загрузке работают на частоте 4300 МГц — это плюс 20% к номинальной частоте. Энергопотребление выросло до 137 Вт при напряжении 1.42 В. Максимальная температура при стресс-тесте была 82°C. Из минусов можно отметить отсутствие изменения частоты без нагрузки.

Но это еще не все, что возможно делать с процессорами на архитектуре Zen 2. Так как процессор физически состоит из отдельных блоков CCX по 4 ядра в каждом, то каждый из этих блоков можно разгонять отдельно, если, конечно, в BIOS имеется такая возможность.

В нашем процессоре 3700Х таких блоков два и один из них обладает более удачными ядрами, на нем мы и попробуем увеличить частоту выше общих 4300 МГц.

Для этих манипуляций найдем соответствующие параметры на вкладке AMD Overclocking.

Предварительно во вкладке OC Tweaker значение CPU Frequency оставляем в ручном режиме, множитель не трогаем, но изменяем значения напряжения.

На вкладке AMD Overclocking нас интересуют два параметра – CCX0 и CCX1 Frequency, их и будем изменять. Так как все ядра работали на 4300 МГц, этот параметр оставляем для второго блока, а на первом начинаем увеличивать частоту с шагом в 25 МГц.

Наибольшее значение, стабильно работающее, было 4350 МГц.

Прибавка незначительная, но нам важен сам принцип. В старшем AMD Ryzen 9 3900X таких исполнительных блоков уже четыре, по 3 ядра в каждом, и соответственно, больше маневр для их раздельного разгона.

Предыстория появления Adidas Boost

С момента своего первого появления еще в конце 40-х годов adidas помог реструктурировать спортивную одежду, подняв бизнес спортивной одежды, до уровня, на который немногие могут претендовать. Благодаря грандиозным показателям только в прошлом году, в том числе признанию Yahoo Finance «Спортивным бизнесом года», устойчивый подъем adidas на вершину был встречен с упорной борьбой. Хотя бренд может похвастаться потоком вневременных продуктов, которые продолжают влиять на текущее состояние культуры кроссовок — вспомните такие силуэты, как Superstar, Stan Smith и Rod Laver — многие согласятся, что титан спортивной одежды не спешил выбраться из ворот технологических инноваций.
Находясь в стороне от доминирующего положения технологии Nike Air на протяжении большей части 90-х годов, как Adidas, так и конкуренты изо всех сил пытались конкурировать с тогдашним ультрасовременным прорывом. С прямыми ссылками на стремительно растущую популярность моделей Air Max и Air Jordan соответственно, его гениальная воздушно-ориентированная межподошва, как будто в одиночку, навсегда и к лучшему изменила рынок обуви с высокими характеристиками. С учетом сказанного, Adidas в конечном итоге дал ответный удар своей собственной современной системой. Немецкий производитель кроссовок, хотя и считался опоздавшим на вечеринку, в конечном итоге показал лицо, сразу же сделав свое присутствие ощутимым — монументальным образом, изменившим правила игры.

Изменения значений Precision boost overdrive, BCLK и Offset voltage

Данная функция работает для процессоров с индексом Х и рассчитана исключительно на усиление динамического разгона. По умолчанию она отключена и её активация ведет к прекращению гарантии.

Ищем в BIOS параметр Precision Boost Overdrive. На нашей плате данный параметр был спрятан во вкладке Advanced в параметре AMD Overclocking.

Здесь мы задаем значения для параметров PPT, TDC, и EDC, их мы рассматривали выше. Выставляем везде значение 1000, что снимет все ограничения по этим пунктам. Также можно установить лимиты более реальные, рекомендованные для 3700X – 105, 70, 105, что не лишит защиты VRM.

Коэффициент зависимости напряжения от частоты, или Scalar, изменяется в диапазоне от ×1 до ×10, на практике он практически не повлиял на прибавку частоты процессора, но максимальное напряжение увеличивается при выборе большего коэффициента. Выставим значение ×2.

Значение максимального буста выставим 200 МГц – это наибольшее возможное число.

Ниже выставляем лимитирующую температуру 85 или 95 градусов.

Затем нам нужно настроить значения CPU Core Voltage — Offset Mode. Находим во вкладке OC Tweaker параметр External Voltage Settings and LLC.

Выставляем минимальное значение Offset Mode в мВ, данное значение будет плюсоваться к базовому значению напряжения при максимальной нагрузке на процессор. Возможно и отрицательное значение, тогда оно будет вычитаться из базового значения.

Здесь же можем выставить уровни значений LLC (Load-Line Calibration) – это надбавочное напряжение во время нагрузки, оно влияет на стабильность при разгоне. Всего пять уровней, от 25 до 100%.

Прочие значения CPU Over Protection оставляем в автоматическом режиме для защиты компонентов.

Сохраняемся и проверяем стабильность работы. При нестабильном поведении можем увеличить минимальное значение Offset Mode, изменить значение Scalar и уровень LLC.

Добившись стабильной работы на установленных значениях, можем еще увеличить частоту за счет изменения системной шины BCLK. По умолчанию у нас 100 МГц. Изменение данного параметра повлияет не только на процессор, но и на память, порты USB, шину PCI-E и интерфейсы SATA. Его увеличение разгоняет почти все компоненты материнской платы, что может привести к проблемам с их стабильностью, особенно это касается накопителей.

Стабильное значение было 102 МГц. Данное число умножается на динамически изменяющийся множитель и получаем результирующее значение максимальной частоты в тех или иных задачах. Максимально частота на 1-3 ядрах поднималась до 4513 МГц. При 100% загрузке всех потоков максимальная частота составила 4308 МГц по всем ядрам.

Сколько мы смогли прибавить к автоматическому разгону за счет ручной правки значений BIOS? В однопоточном режиме плюс 100 МГц, в многопоточном режиме прибавка значительнее – почти 300 МГц, это значение соответствует полученному при разгоне за счет изменения множителя.

В отличии от предыдущего вида разгона энергопотребление уменьшилось до 119 Вт при среднем напряжении 1.4 В, в пиках нагрузки напряжение благодаря Offset Mode поднималось кратковременно до 1.49 В максимум. Температура под нагрузкой также уменьшилась и составила максимум 75°C.

Сотрудничество с Канье и Фарреллом

Конечно, мы не можем упомянуть слово «буст», не думая о Канье. Кроссовки Yeezy Boost 750 впервые появились на сцене в 2015 году. Однако в течение 2021 года мы действительно начали наблюдать за тем, как Трилистник разворачивается и наращивают обороты благодаря обещанию Ye об Изи Бустах для всех. Новые цвета 350, 750 и 700 продолжают появляться в разных цветовых решениях, создавая перепродажи лимиторованных кроссовок. Так сложилось у Adidas, что одной мегазведы будет маловато и они продолжили с моделью NMD сотрудничество с Pharrell Williams. Кроссовки «Hu» от Фаррела распрадаются раньше, чем многие люди осознают что они появились в ритейле.

Одним из самых громких разговоров в первые дни BOOST была его совершенно белая отделка. Бодрая пена была просто слишком далеко впереди других технологий. В Adidas посчитали оставить единственный белый цвет, вместо того, чтобы пожертвовать долговечностью ради эстетики. До 2021 года adidas не выпускала цветную версию, поэтому выпуски с метким названием «Color BOOST» вызвали огромный резонанс.

Ryzen master, софтверный разгон

Для разгона своих процессоров из-под Windows компания AMD предлагает фирменную утилиту Ryzen master.

В данной утилите возможны все рассмотренные выше виды разгона.

Автоматический разгон — в этой вкладке мы можем изменить только параметры PPT, TDC, EDC и значение Boost, также максимум до 200 МГц. Частоту или напряжение мы поменять не сможем.

Эти же значения, но уже без выбора величины Boost можно менять в режиме Precision boost overdrive. Значения PPT, TDC, EDC по умолчанию 1000, 380, 380.

В обоих вариантах мы получили практически идентичные результаты. В отличии от автоматического режима, заданного BIOS материнской платы, прибавка была всего 50 МГц в многопоточных задачах, и до 300 МГц при смешанной нагрузке. На одно ядро — все те же 4400 МГц. А вот показатели энергопотребления и температур выросли.

Более интересным и практически востребованным видится нам режим ручного разгона. Здесь мы можем изменять не только значения CCX-модулей, но и каждого ядра в отдельности. Причем программа помечает наиболее удачные ядра для разгона. Также здесь можно вообще отключать отдельные ядра. Таких настроек нет в большинстве BIOS материнских плат.

Выставив на все ядра, ранее выявленную стабильную частоту в 4300 МГц, мы получили те же результаты. Повышение до 4400 МГц привело к перезагрузке системы после включения тестовой утилиты.

При раздельном разгоне каждого исполнительного блока CCX мы получили такие же результаты: 4350 и 4300 МГц соответственно.

Также мы заметили, что ядра, помеченные программой как самые эффективные, не совпадали с теми, что реально показывали в тестах большую частоту. Ryzen master пометила 3 ядро золотой звездой, 7 ядро серебренной, 2 и 6 — кружком. В тестах 1, 3 и 8 брали наибольшие частоты, второе ядро занимало место ниже.

Driver Booster Power Plan — что это такое?

Схема питания от ПО Driver Booster, дает примерно такой же эффект как и схема высокой производительности.

Откуда взялась? Все просто — вы установили программу Driver Booster, которая добавила в Windows свою схему питания, которая якобы лучше всех.


Чтобы открыть данное окно: зажмите Win + R > вставьте команду control или control panel > откроется панель управления, найдите значок Электропитание и запустите.

Мой совет — удалить схему питания, потому что от нее толка нет никакого и лучше использовать штатные схемы Windows.

Итоговые результаты

Давайте посмотрим на прирост производительности в тестовых утилитах при различных режимах разгона. Во всех тестах оперативная память работала с XMP профилем 3200 МГц 16-18-18-36 CR1.

Первый тест LinX 0.6.5 AMD Edition AVX. Данная утилита нагружает все потоки. Приведем параметры в GFlops.

Следующий тест — Cinebench R20 также нагружает все ядра, рендеринг является одной из самых популярных нагрузок для современного ПК, где задействуется многопоточность.

Как видим, в задачах, нагружающих все потоки, преимущество у разгона по множителю, частота и напряжение фиксированные. Режим разгона PBO+BCLK немного уступает, хотя все ядра и работают на такой же частоте в 4300 МГц, но они могут просаживаться периодически. Софтверный разгон уступает незначительно.

Следующие тесты нагружают не все потоки равномерно, архиватор WinRAR и wPrime изменяют нагрузку в динамике.

В данных тестах мы видим, что разгон по множителю проигрывает в производительности из-за меньшей частоты при задействовании 1-3 ядер.

На скорость работы с памятью оказывает влияние только режим разгона с увеличением BCLK, так как он изменяет и скоростные характеристики памяти за счет увеличения частоты шины. Мы видим при этом прирост в записи и копировании данных.

История разработки

Несмотря на то, что официальный релиз Boost состоялся в 2013 году, разработка этой технологии началась в 2007. И разрабатывали её вовсе не adidas. За инновацию отвечал один из крупнейших производителей химической продукции — Badische Anilin & Soda-Fabrik (сокращённо BASF).

Первоначально новинка выглядела как россыпь небольших белых гранул, которые разработчики называли «энергосберегающими капсулами». Несмотря на столь важные свойства таких амортизирующих капсул и высвобождение энергии, BASF так и не нашли для будущей Boost достойного применения. Тогда инженерами компании было принято решение слить эти гранулы воедино, чтобы получить более практичные блоки с энергоотдачей. А термин «энергоотдача» к тому моменту уже звучал при упоминании беговой обуви, так что недолго думая BASF решили продать патент на технологию гиганту спортивной индустрии adidas.

Материал для технологии adidas Boost

Белые гранулы для технологии adidas Boost

Бренд, конечно же, не спешил отказываться от такой отличной возможности. На презентации было представлено несколько экземпляров продукции, изготовленной с применением будущей Boost. Мячу, который был центральным образцом на презентации, предстояло в будущем стать одной из важнейших вещей, когда-либо созданных по этой инновационной технологии. Белые гранулы BASF превосходили по своим свойствам ставший уже традиционным этилвинилацетат (он же ЭВА/EVA).

Немецкая спортивная марка была впечатлена свойствами амортизирующих капсул, а потому они без промедления подписали договор, дававший adidas исключительную лицензию на производство межподошв по технологии BASF. А затем, когда все юридические нюансы и формальности были решены, технологи бренда быстро придумали, как можно было бы усовершенствовать только что приобретённую технологию. Уже в 2012 году adidas начинают испытывать первые прототипы того, что в будущем станет уже известной всем Energy Boost.

Ryzen 2600 VDDCR Core Volts.

Это часть разгона, и одно и то же напряжение можно использовать для разгона как 2600, так и 2600X. Убедитесь, что вы используете экономичное напряжение для повседневного использования, в этом случае согласованное онлайн-значение составляет 1,38 В для напряжения процессора. Раньше это было 1,40 В, однако некоторые пользователи Reddit прокомментировали ухудшение характеристик процессора при напряжении, превышающем 1,38 В. Более высокие напряжения могут использоваться для кратковременного использования с надлежащим охлаждением для тестирования и записи.

  • Рекомендуемое AMD напряжение: от 1,300 до 1,350 В.
  • Рекомендуемое сообществом напряжение: от 1,350 до 1,400 вольт.
  • Абсолютный максимум и не рекомендуется: от 1,400 до 1,500 вольт.

Здесь есть 2 настройки, которые будут использоваться: напряжение процессора (напряжение процессора VDDCR) и соотношение ядер процессора. Для напряжения сердечника используйте либо напряжение ручного режима, либо напряжение смещения. Руководство проще в использовании и будет использоваться в этом руководстве. Режим смещения предлагает лучший детальный контроль над напряжением, однако вы сохраняете ограничения по напряжению.

Напряжение SoC не применяется при разгоне процессора, оно используется для FCLK (тактовая частота Infinity Fabric) и MCLK (тактовая частота памяти). Если вы испытываете нестабильность из-за памяти или бесконечной настройки ткани, это напряжение может быть полезно. Более подробное руководство по разгону памяти, охватывающее системы AMD и Intel, ссылка здесь: Часто задаваемые вопросы о терминологии разгона оперативной памяти DDR и Руководство по разгону для оперативной памяти DDR4. Если у вас есть QVL-память или нет QVL-памяти и есть проблемы с стабильностью работы с профилем XMP, обратитесь к этому руководству: Как стабилизировать DDR4 с помощью Infinity Fabric

Поскольку никакая сборка ПК не является такой же, начните с наивысшего рекомендованного AMD напряжения процессора 1,350 В. Это также будет работать для стандартного кулера AMD, но ожидайте большего шума вентилятора, чем при более надежном охлаждении, таком как Gelid Phantom Black, использованный при написании этого руководства. Далее следует соотношение ядер ЦП. Легкий разгон составит 4,0 ГГц, чтобы достичь 40,00 в разделе «Соотношение ядер ЦП». Сохраните, выйдите и загрузитесь в Window. Теперь, чтобы убедиться, что разгон стабильный, запустите Prime95 или Linpack Xtreme. Для Prime95 используйте малые БПФ и дайте ему поработать не менее 10 минут. Linpack Xtreme, если вы хотите использовать стресс-тест, используйте половину общей емкости вашей оперативной памяти, используя все ядра и потоки, как минимум с 3 запусками стресс-теста. При этом следите за HWiNFO64 в отношении напряжения и температуры ядра.

Он должен был пройти любой тест, теперь вы можете решить оставить разгон на 4,0 ГГц и настроить напряжение процессора. Разгон 4,0 ГГц, используемый в этом руководстве, использовал 1,269 В с калибровкой линии нагрузки 4. Если вы хотите пойти выше и перейти на 4,1 ГГц, загрузитесь обратно в BIOS и отрегулируйте напряжение ЦП до 1,38 В с соотношением ядер ЦП 41. Этот конкретный 2600 не достиг 4,1 ГГц при сохранении напряжения, в то время как он прошел Prime95, он не прошел стресс-тест Linpack Xtreme, поэтому не считается 100% стабильным. В этом случае. при разгоне было настроено напряжение на 4,05 ГГц для повседневного использования. И прошел стресс-тестирование Prime95 и Linpack Xtreme.

AMD Overclocking Terminology FAQ

This Terminology FAQ will cover some of the basics when overclocking AMD based CPU’s from the Ryzen series. This covers the Zen, Zen+ and Zen 2 architectures and all products stemming from those architectures. Going over some of the basics of BIOS settings and what a function is or why it should be turned on or off and under what condition(s). These settings will vary from motherboard and CPU as well as the degree to which they can be set in the BIOS.

The Basics.

What is a VRM?

VRM stands for Voltage Regulator Module and is located close to the CPU socket to provide a reliable and clean power supply. The VRM regulates the power from the PSU. In overclocking you modify BIOS settings to instruct the VRM for increased performance at the expense of increased heat output. Motherboards for overclocking come with a high-quality VRM that uses better components. But a VRM always consists of MOSFET’s, Chokes, Capacitors, and a PWM Controller. The IC(Integrated Circuit)is there to control and regulate those components.

What is the difference between Ryzen and Zen?

Ryzen and Zen are the same, whereas Zen is the architecture and Ryzen is the product name of the AMD consumer-based CPU’s. So Ryzen CPU’s are based on the Zen architecture, Zen 1 architecture is used for the Ryzen 1000 series CPU’s(Ryzen 1600X et), Zen+ is used for the Ryzen 2000 series CPU’s(2600X etc.). Zen 2 architecture is used for the Ryzen 3000 series(3600X etc.) Zen 3 architecture is used for the Ryzen 5000 series(5600X etc).

What is AMD CBS?

Custom settings for your Ryzen CPU’s that are provided by AMD, CBS stands for Custom BIOS Settings. Settings like ECC RAM that are not technically supported but work with Ryzen CPU’s as well as other SoC domain settings.

What is PBO?

Precision Boost Overdrive(PBO) is the AMD automatic overclocking solution for the Ryzen CPÚs. Initially released on the Threadripper HDT CPU’s and should not be confused with Precision Boost what dictates the Frequency Range boosting table. It comes default on motherboards that have a design spec of 88w and/or 60A or higher using CPU’s that have a 65W TDP or higher.

What are save voltages for Ryzen APU internal GPU?

The internal Vega GPU is the same on all Ryzen APU variants. The RX Vega 11 and RX Vega 8 internal GPU frequency can be overclocked.

What are save voltages for Ryzen SoC?

SoC voltage is the same for all architectures with the Ryzen CPUs. And are used when overclocking the FCLK(Infinity Fabric) and MCLK(Memory Frequency). And in some cases can help to stabilize CPU overclocking.

What are save voltages for Ryzen CPU’s?

Each Zen architecture has it’s own AMD recommend, and Community recommended voltages. Save voltages are to ensure your CPU will have a long life span. Dangerous voltages may damage or degrade a CPU. The table below has the save voltages for each of the Zen architecture released by AMD.

BIOS Settings.

What is VDDCR CPU Load Line Calibration?

CPU LLC adds extra voltage to compensate for Vdroop when a CPU or GPU is put under heavy load. LLC gives overclocking stability by preventing low or high voltage fluctuations and tries to maintain a stable voltage supply to the CPU or GPU. Higher LLC tends to overshoot more in voltage supply, and a lower LLC tends to undershoot in the voltage supply to the CPU.

What is VDDCR CPU Current Capability?

It is a threshold for the VRM to shut down and monitors the current supply to the CPU, setting Current Capability higher will allow for more current supply to the CPU but will increase heat output. This works best if you have an overclock that shuts down the motherboard/PC because the threshold is triggered.

What is VDDCR CPU Switching Frequency?

Switching frequency is the transient response of your VRM MOSFETs settings this higher in Mhz will allow for a better transient response at the expense of increased heat output and using a lower setting in Mhz will lower the heat output but lower the transient response. Better transient response in overclocking translates into a more stable voltage supply from your PSU to the CPU.

What is VDDCR CPU Power Duty Control?

This will allow for setting the current supply to the internal CPU voltage regulator at the expense of increased heat when set to extreme and lower heat when using optimized or standard. This will help with stability in overclocking and give the best result when using optimized or extreme.

What is VDDCR CPU Power Phase Control?

This affects your VRM Power Phases to the CPU and will be depending on the setting, achieve greater stability in overclocking. Setting Power Phase Control to extreme keeps the number of active CPU power phases at the maximum. If you set Power Phase Control to optimized, there will be a power-saving, but less stability, phases to the CPU will power down.

What is SOC?

SOC(AMD) stands for System On Chip and is also known as uncore(Intel) and encompasses all the components, not in the core of the actual CPU but on the same substrate like internal GPU, Cache, I/O Ports, Memory Controller etc. Overclocking SOC settings can help in varying degrees with keeping CPU core components stable.

Zen 1 and Zen 2 Core vs SoC infographic

What is VDDCR SOC Load Line Calibration?

SOC LLC adds extra voltage to compensate for Vdroop when uncore is put under heavy load LLC gives overclocking stability by preventing low or high voltage fluctuations and tries to maintain a stable voltage supply to the uncore. Higher LLC tends to overshoot more in voltage supply, and a lower LLC tends to undershoot in the voltage supply to the SoC.

What is VDDCR SOC Current Capability?

It is a threshold for the VRM to shut down and monitors the current supply to the SoC, setting Current Capability higher will allow for more current supply to the SoC but will increase heat output. This works best if you have an overclock that shuts down the motherboard/PC because the current threshold is triggered.

What is VDDCR SOC Switching Frequency?

Switching frequency is the transient response of your VRM MOSFETs settings this higher in Mhz will allow for a better transient response at the expense of increased heat output and using a lower setting in Mhz will lower the heat output but lower the transient response. Better transient response in overclocking translates into a more stable voltage supply to the SoC.

What is VDDCR SOC Power Phase Control?

This affects your VRM Power Phases to the uncore and will be depending on the setting, achieve greater stability in overclocking. Setting Power Phase Control to extreme keeps the number of active SoC power phases at the maximum If you set Power Phase Control to optimized there will be a power-saving, but less stability, phases to the CPU will power down.

What is VDDCR SOC Voltage?

This setting affects the voltage supply to the SoC components. It should be increased when overclocking the CPU core frequency/ratio to aid with better stability of the SoC components as well as the core components. Increasing the VDDCR SOC Voltage will increase the heat output of the CPU package as a whole.

What is CPU Core Ratio?

Sets the clock rate of your CPU by a factor of 10X. So a Core Ratio of 40.00 will multiply the external clock with a base value of 100 to 4,0Ghz.

What is VDDCR CPU Voltage?

Sets the voltage for your CPU on a 1:1 ratio, depending on your motherboard you can either enter a manual value of an offset value. So a value of 1.4000 will set the CPU voltage to 1.4 volts using the manual setting.

What is FCLK?

Stands for Infinity Fabric Clock Speed(FCLK) and can be adjusted with the new Ryzen 3000 series(Zen2). In previous Zen and Zen+ architecture, the Infinity Fabric Clock speed would be set by the DRAM frequency(MCLK). Ideally, you want FCLK to run synchronously(1:1 ratio) with the MCLK for best performance. In short, a DDR4(Double Data Rate) kit is rated for 3600Mhz MCLK and therefore will run synchronously with 1800Mhz FCLK, a 1:1 ratio.

What is the GFX clock frequency?

Sets the clock rate of the internal Vega GPU on Ryzen APUs by a factor of 1:1, so a 1600 value translates into a 1600mhz GPU clock speed.

What is the GFX core voltage?

Sets the voltage for the internal Vega GPU on Ryzen APUs on a 1:1 ratio, so a manual value of 1.25000 is 1.25 volts.

What is AMD SAM?

Stands for Smart Access Memory and work with the AMD 5000 series CPUs and AMD 6000 GPU’s. In short, it is a new way for your PC to access the whole memory capacity(VRAM) of an AMD 6000 series GPU. Previously this was done with 256MB paging of the VRAM called BAR(Base Adress Register). Depending on your motherboard brand it can be found in the PCIe section of the advanced menu or advanced settings and turn on Above 4G Encoding and Re-Size BAR Support.

What is DRAM Voltage?

Is the voltage supply to your RAM aka Memory sticks, increasing the DRAM voltage will allow your RAM to run at a higher frequency at times without changing the DRAM Timings but will increase heat output.

What is Global C-State Control?

This sets the idle states of a CPU when it is not executing commands there a various C-States and serve as a power-saving function. For overclocking, this should be turned off since you want maximum performance at the expense of increased power consumption and helps with keeping a stable overclock.

Closing thoughts.

The main reason to write this FAQ is to supplement guides for AMD Ryzen based CPU’s found on this website, and I could not find a one-stop-shop solution for ensuring I nail the explanation for each BIOS settings correctly. You can find my guides for the AMD Ryzen CPU’s in the bullet list below.

Виды разгона AMD Ryzen. Тест Ryzen 7 3700X на ASRock X570 Extreme 4

Процессоры с разблокированным множителем всегда ценились энтузиастами. Увеличение их частоты путем несложных манипуляций давало возросшую производительность, сравнимую с показателями старших моделей в линейке.

Но на сегодняшний день ситуация с разгоном изменяется не в лучшую сторону для пользователей. В конкурентной борьбе производители стараются изначально выжать максимум из чипов.

Да и нужен ли ручной разгон на современной платформе? Процессоры стали намного интеллектуальнее за последние пару лет. Они умеют разгонять себя сами – технологии Turbo Boost у intel и Precision Boost Overdrive (PBO) у AMD. В отличии от ручного разгона, данные технологии работают по алгоритму, основанному на множестве датчиков – учитываются показатели напряжений, энергопотребления, температуры.

Особенно в этом преуспела компания AMD с выходом архитектуры Zen 2. Давайте рассмотрим способы разгона процессоров Matisse на примере Ryzen 7 3700X. Оценим их возможности и обсудим актуальность разгона как такового.

Основные характеристики процессора

  • Количество ядер/потоков: 8/16;
  • Базовая частота/максимальная частота: 3.6/4.4 ГГц;
  • Техпроцесс: TSMC 7nm FinFET;
  • TDP по умолчанию: 65 Вт;
  • Максимальная температура: 95°C.

Тестовый стенд

  • Процессор: AMD Ryzen 7 3700X;
  • Материнская плата: ASRock X570 Extreme 4, BIOS v 2.30 от 16.03.20;
  • Оперативная память: XPG Spectrix D80 DDR4 RGB Red Edition AX4U320038G16-DR80;
  • Охлаждение CPU: Thermaltake Pacific RL240 Water Cooling Kit;
  • Блок питания: Enermax Platimax D.F. 750W;
  • Накопитель: Goodram PX500 NVMe PCIe Gen 3 ×4 на 512 ГБ;
  • Операционная система: Windows 10 Pro 64-bit версия 2004.

Автоматический разгон

Автоматический разгон, или Boost, у AMD лимитируется несколькими параметрами:

  • PPT Limit (Package Power Tracking) – ограничение на потребление процессором энергии в ваттах, при превышении TDP частоты уменьшаются.
  • TDC Limit (Thermal Design Current) — ограничение на максимальный ток, подаваемый на процессор. Определяется эффективностью охлаждения VRM на материнской плате.
  • EDC Limit (Electrical Design Current) – ограничение на максимальный ток, подаваемый на процессор. Определяется электрической схемой VRM на материнской плате.
  • Precision Boost Overide Scalar – коэффициент зависимости подаваемого на процессор напряжения от его частоты. При отключении трех выше приведенных параметров данный ограничитель спасает процессор от выхода из строя, ограничивая подаваемое напряжение. Для одного ядра и для всех ядер этот показатель различается. В нашем случае при максимальном значении Scalar ×10 с отключенными ограничениями максимальное напряжение на одно ядро составило 1.49 В.

Как видим, авторазгон зависит не только от экземпляра процессора, но и от материнской платы, а конкретно от её схемы питания VRM, её охлаждения, а также от эффективности охлаждения самого CPU.

Учитывается не только общая пиковая мощность чипа, но и индивидуальные характеристики каждого ядра: его частотный отклик на напряжение, тепловые взаимодействия между соседними ядрами, ограничения по мощности для каждого ядра.

В автоматическом разгоне максимальная частота на 1-3 ядра была 4400 МГц, четыре ядра, восемь потоков работали с максимальной частотой 4275 МГц, при 100% нагрузке на всех потоках все ядра работали на частоте 3949 МГц. Максимальное энергопотребление составило 90 Вт с наибольшим напряжением от 1.18 до 1.49 В. В стресс-тесте LinX температура поднялась до 68°C.

В однопоточном режиме максимальная частота достигает заявленной в технических характеристиках Ryzen 7 3700X. В многопоточном режиме авторазгон прибавляет 12% к базовой частоте процессора.

Ручная установка множителя

Это самый популярный способ разгона процессоров, не требующий особых знаний, известен много лет, именно он используется в основном для разгона процессоров intel. Подходит для процессоров Ryzen без суффикса Х.

Заходим в BIOS, ищем вкладку или параметр OC Tweaker. Значение CPU Frequency переводим в ручной режим. Изменять будем два параметра: множитель и напряжение.

По умолчанию для нашего процессора эти показатели равны 36 и 1.1 В. Постепенно изменяем множитель на единицу, сохраняемся, загружаем Windows и тестируем стабильность работы. При невозможности загрузки ОС или ошибках в тестах, увеличиваем напряжение. Безопасным считается диапазон напряжения до 1.45 В.

Необходимо учесть, что при включении ручного режима изменения множителя, динамическое изменение частоты отключается, все ядра будут работать на выставленной вручную частоте, не снижая ее без нагрузки. Напряжение при этом будет изменяться в зависимости от нагрузки.

В результате нам удалось поднять частоту всех ядер до 4.3 ГГц с напряжением 1.42 В. На данной частоте система работала стабильно, проходила все тесты без ошибок.

На частотах 4.4 и 4.45 ГГц Windows загружалась, но в тестах были ошибки, и система работала не стабильно. Повышение напряжения не помогало.

Приведем график зависимости роста напряжения от частоты, изменения температуры под нагрузкой и энергопотребления.

Как видим, до 4.2 ГГц напряжение изменяется незначительно и температуры достаточно низкие. Но уже на 4.3 ГГц температура и энергопотребление значительно возрастают.

Что получаем в итоге? Все ядра при 100% загрузке работают на частоте 4300 МГц — это плюс 20% к номинальной частоте. Энергопотребление выросло до 137 Вт при напряжении 1.42 В. Максимальная температура при стресс-тесте была 82°C. Из минусов можно отметить отсутствие изменения частоты без нагрузки.

Но это еще не все, что возможно делать с процессорами на архитектуре Zen 2. Так как процессор физически состоит из отдельных блоков CCX по 4 ядра в каждом, то каждый из этих блоков можно разгонять отдельно, если, конечно, в BIOS имеется такая возможность.

В нашем процессоре 3700Х таких блоков два и один из них обладает более удачными ядрами, на нем мы и попробуем увеличить частоту выше общих 4300 МГц.

Для этих манипуляций найдем соответствующие параметры на вкладке AMD Overclocking.

Предварительно во вкладке OC Tweaker значение CPU Frequency оставляем в ручном режиме, множитель не трогаем, но изменяем значения напряжения.

На вкладке AMD Overclocking нас интересуют два параметра – CCX0 и CCX1 Frequency, их и будем изменять. Так как все ядра работали на 4300 МГц, этот параметр оставляем для второго блока, а на первом начинаем увеличивать частоту с шагом в 25 МГц.

Наибольшее значение, стабильно работающее, было 4350 МГц.

Прибавка незначительная, но нам важен сам принцип. В старшем AMD Ryzen 9 3900X таких исполнительных блоков уже четыре, по 3 ядра в каждом, и соответственно, больше маневр для их раздельного разгона.

Изменения значений Precision boost overdrive, BCLK и Offset voltage

Данная функция работает для процессоров с индексом Х и рассчитана исключительно на усиление динамического разгона. По умолчанию она отключена и её активация ведет к прекращению гарантии.

Ищем в BIOS параметр Precision Boost Overdrive. На нашей плате данный параметр был спрятан во вкладке Advanced в параметре AMD Overclocking.

Здесь мы задаем значения для параметров PPT, TDC, и EDC, их мы рассматривали выше. Выставляем везде значение 1000, что снимет все ограничения по этим пунктам. Также можно установить лимиты более реальные, рекомендованные для 3700X – 105, 70, 105, что не лишит защиты VRM.

Коэффициент зависимости напряжения от частоты, или Scalar, изменяется в диапазоне от ×1 до ×10, на практике он практически не повлиял на прибавку частоты процессора, но максимальное напряжение увеличивается при выборе большего коэффициента. Выставим значение ×2.

Значение максимального буста выставим 200 МГц – это наибольшее возможное число.

Ниже выставляем лимитирующую температуру 85 или 95 градусов.

Затем нам нужно настроить значения CPU Core Voltage — Offset Mode. Находим во вкладке OC Tweaker параметр External Voltage Settings and LLC.

Выставляем минимальное значение Offset Mode в мВ, данное значение будет плюсоваться к базовому значению напряжения при максимальной нагрузке на процессор. Возможно и отрицательное значение, тогда оно будет вычитаться из базового значения.

Здесь же можем выставить уровни значений LLC (Load-Line Calibration) – это надбавочное напряжение во время нагрузки, оно влияет на стабильность при разгоне. Всего пять уровней, от 25 до 100%.

Прочие значения CPU Over Protection оставляем в автоматическом режиме для защиты компонентов.

Сохраняемся и проверяем стабильность работы. При нестабильном поведении можем увеличить минимальное значение Offset Mode, изменить значение Scalar и уровень LLC.

Добившись стабильной работы на установленных значениях, можем еще увеличить частоту за счет изменения системной шины BCLK. По умолчанию у нас 100 МГц. Изменение данного параметра повлияет не только на процессор, но и на память, порты USB, шину PCI-E и интерфейсы SATA. Его увеличение разгоняет почти все компоненты материнской платы, что может привести к проблемам с их стабильностью, особенно это касается накопителей.

Стабильное значение было 102 МГц. Данное число умножается на динамически изменяющийся множитель и получаем результирующее значение максимальной частоты в тех или иных задачах. Максимально частота на 1-3 ядрах поднималась до 4513 МГц. При 100% загрузке всех потоков максимальная частота составила 4308 МГц по всем ядрам.

Сколько мы смогли прибавить к автоматическому разгону за счет ручной правки значений BIOS? В однопоточном режиме плюс 100 МГц, в многопоточном режиме прибавка значительнее – почти 300 МГц, это значение соответствует полученному при разгоне за счет изменения множителя.

В отличии от предыдущего вида разгона энергопотребление уменьшилось до 119 Вт при среднем напряжении 1.4 В, в пиках нагрузки напряжение благодаря Offset Mode поднималось кратковременно до 1.49 В максимум. Температура под нагрузкой также уменьшилась и составила максимум 75°C.

Ryzen master, софтверный разгон

Для разгона своих процессоров из-под Windows компания AMD предлагает фирменную утилиту Ryzen master.

В данной утилите возможны все рассмотренные выше виды разгона.

Автоматический разгон — в этой вкладке мы можем изменить только параметры PPT, TDC, EDC и значение Boost, также максимум до 200 МГц. Частоту или напряжение мы поменять не сможем.

Эти же значения, но уже без выбора величины Boost можно менять в режиме Precision boost overdrive. Значения PPT, TDC, EDC по умолчанию 1000, 380, 380.

В обоих вариантах мы получили практически идентичные результаты. В отличии от автоматического режима, заданного BIOS материнской платы, прибавка была всего 50 МГц в многопоточных задачах, и до 300 МГц при смешанной нагрузке. На одно ядро — все те же 4400 МГц. А вот показатели энергопотребления и температур выросли.

Более интересным и практически востребованным видится нам режим ручного разгона. Здесь мы можем изменять не только значения CCX-модулей, но и каждого ядра в отдельности. Причем программа помечает наиболее удачные ядра для разгона. Также здесь можно вообще отключать отдельные ядра. Таких настроек нет в большинстве BIOS материнских плат.

Выставив на все ядра, ранее выявленную стабильную частоту в 4300 МГц, мы получили те же результаты. Повышение до 4400 МГц привело к перезагрузке системы после включения тестовой утилиты.

При раздельном разгоне каждого исполнительного блока CCX мы получили такие же результаты: 4350 и 4300 МГц соответственно.

Также мы заметили, что ядра, помеченные программой как самые эффективные, не совпадали с теми, что реально показывали в тестах большую частоту. Ryzen master пометила 3 ядро золотой звездой, 7 ядро серебренной, 2 и 6 — кружком. В тестах 1, 3 и 8 брали наибольшие частоты, второе ядро занимало место ниже.

Итоговые результаты

Давайте посмотрим на прирост производительности в тестовых утилитах при различных режимах разгона. Во всех тестах оперативная память работала с XMP профилем 3200 МГц 16-18-18-36 CR1.

Первый тест LinX 0.6.5 AMD Edition AVX. Данная утилита нагружает все потоки. Приведем параметры в GFlops.

Следующий тест — Cinebench R20 также нагружает все ядра, рендеринг является одной из самых популярных нагрузок для современного ПК, где задействуется многопоточность.

Как видим, в задачах, нагружающих все потоки, преимущество у разгона по множителю, частота и напряжение фиксированные. Режим разгона PBO+BCLK немного уступает, хотя все ядра и работают на такой же частоте в 4300 МГц, но они могут просаживаться периодически. Софтверный разгон уступает незначительно.

Следующие тесты нагружают не все потоки равномерно, архиватор WinRAR и wPrime изменяют нагрузку в динамике.

В данных тестах мы видим, что разгон по множителю проигрывает в производительности из-за меньшей частоты при задействовании 1-3 ядер.

На скорость работы с памятью оказывает влияние только режим разгона с увеличением BCLK, так как он изменяет и скоростные характеристики памяти за счет увеличения частоты шины. Мы видим при этом прирост в записи и копировании данных.

Выводы

Разгон процессора AMD Ryzen 7 3700X оказывается сомнительной затеей. И у нас имеются, как минимум, две причины для этого утверждения.

Первое – стоимость материнской платы на чипсете Х570 с адекватно реализованным VRM и эффективная система охлаждения CPU будут стоить столько же, сколько стоит сам процессор.

Второе – разгон в ручном режиме дает прибавку в 100-300 МГц к тем значениям, которые демонстрирует процессор в автоматическом режиме, благодаря технологии PBO. Прибавка производительности за счет этих дополнительных пары сотен заметна только в бенчмарках, в реальных задачах вы ее не увидите.

Следующий вывод мы сделали о неактуальности разгона за счет фиксирования частоты множителем для процессоров архитектуры Zen 2. На сегодняшний день о нем можно забыть. Увеличение частоты на всех ядрах дает прирост производительности только в многопоточных режимах, от 8 и более. И снижает производительность в однопоточных задачах.

Даже при автоматическом разгоне при задействовании четырех ядер и восьми потоков все они работали на частоте 4300 МГц – максимально возможной при разгоне за счет множителя. А два ядра запросто работали на частоте 4400 МГц. Также при этом виде разгона блокируется динамическое изменение частоты без нагрузки, что приводит к большему энергопотреблению.

Лучшим решением видится разгон за счет модификации уже имеющегося буста через настройки питания процессора. Изменение напряжений через оффсет-режим, отключение лимитов PBO, изменения коэффициента Scalar, подбор уровней LLC, а также изменение частоты BCLK может дать прирост производительности как в многопоточных, так и в однопоточных задачах.

Ощутимое значение для данного вида разгона имеют возможности VRM материнской платы и система охлаждения CPU, а также гибкость настроек BIOS конкретной материнской платы.

Был ли разгон эффективным? Глядя на прибавку в 100 МГц по максимально показанной частоте, можно сказать, что нет. Цифра 4.5 ГГц, на фоне возможных 5 ГГц у процессоров intel как-то не особо впечатляет, но не будем столь категоричны и поспешны с выводами. Разгон за счет модификации буста дал нам +300 МГц при многопоточной нагрузке, что более востребовано, чем однопоточный режим.

Технологии развиваются и о простом повышении множителя уже можно забыть. Из самого процессора производитель выжал максимум, и прибавку в частотах мы можем получить, опираясь на возможности подсистемы питания CPU материнской платы и гибкости настроек напряжений в BIOS. А это — возможность конкурентной борьбы среди производителей материнских плат. Возможно, в ближайшее время мы увидим выпуск моделей, способных выжимать из процессоров AMD еще больше мегагерц.

Разгон процессоров AMD вновь становится уделом энтузиастов, обычный пользователь явно не будет заморачиваться ради лишней сотни мегагерц, ведь «умные» процессоры могут эффективно разгонять себя сами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *