Доказать, что боковые грани пирамиды — прямоугольные треугольники.
Доказать что не существует выпуклого многогранника у которого все грани шестиугольники
Доказать что не существует выпуклого многогранника у которого все грани шестиугольники.
Доказать, что прямые, по которым пересекаются соответственные грани, лежат в одной плоскости
Не знаю как доказать:cry:, задача такая: Два тетраэдра расположены в пространстве
_ так, что.
Найти все прямоугольные треугольники
Есть программа на Visual Prolog, помогите пожалуйста перевести на Turbo Prolog. Код программы.
Меню пользователя magirus |
Читать блог |
Элементарно. Два треугольника умеющих один и тот же катит, который перпендикулярен к основанию, прямоугольники, т.к. между катитами у них угл 90градусов. Третья грань тоже прямоугольник, т.к. если рассматривать проекцию катита этого треугольника на основание,то она совпадёт с катитом прямоугольника лежащего в основании и т.к. второй катит основания есть один из катитов третьего треугольника(грани пирамиды) то этот треугольник прямоугольный.
Это просто я объяснил своими словами что и как. Но надо по нормальному всё рассказать. Я сказал только идею. А так такие задачки разобранные есть в интернете и в учебниках. Поищи.
Вычислить объем призмы, боковые грани которой квадраты, а основанием служит равносторонний треугольник, вписан
Вычислить объем призмы, боковые грани которой квадраты, а основанием служит равносторонний.
Найти все равновеликие прямоугольные треугольники
Найти все равновеликие прямоугольные треугольники, катеты которых выражены целыми числами a и b, а.
работа по программированию. N точек, определить прямоугольные треугольники
Вот полная формулировка задания: "Даны N точек на плоскости. Для всех треугольников, образуемых.
Определить по длинам катетов, являются ли прямоугольные треугольники подобными
Числа а и b — длины катетов одного прямоугольного треугольника, с и d — другого .Разработать.
Малоизвестное обобщение теоремы Пифагора
Теорема Пифагора — пожалуй, самая известная из математических теорем. Сколько существует оригинальных доказательств! Сколько применений она находит в технике! Сколькими благами цивилизации мы обязаны этой великой теореме! Однако, совсем недавно, я открыл для себя совершенно новую, ранее неизвестную грань этой теоремы, которая значительно расширяет область ее применения. Именно этим открытием я и хочу поделиться с вами, уважаемые читатели Geektimes. Пожалуйста, не судите строго, если описанные с статье факты, вам известны. Это скроее развлекательная история с научно-популярным элементом, чем строгая математика.
Геометрическое доказательство теоремы Пифагора
Вокруг да около
История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии.
Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором — площадь незакрашенной области равна . Таким образом, . Теорема доказана!
Зарождение идеи
В этой статье я хочу не только рассказать что-то новое и познавательное о теореме Пифагора, но и поделиться своей историей о том, как в моей голове зародилась интересная идея, которую я сумел сформулировать, доказать и даже предположил возможность обобщения на более высокую размерность. Но обо всем по порядку.
Египетские треугольники
Во-первых, это красивые математические объекты. А во-вторых, с ними очень удобно решать задачи! Нет никаких квадратных корней и иррациональных чисел в ответе.
Загадочные четверки
Заметив такое удивительное совпадение, я стал думать. Вопрос, который меня занимал в связи с этим загадочным обстоятельством, наличием не только троек, но и четверок, обнаруживающих свойства египетского треугольника, был таков: «А что бы это все могло значить?» Я перебирал варианты, какие только приходили в голову. В фантазии себя никак не ограничивал. Много раз садился за стол, выписывал известные мне наборы четверок и вдумчиво на них смотрел… часами… без перерыва… и… ничего не происходило. У меня был школьный товарищ Саня, с которым я как-то поделился своими идеями. Но его больше интересовали гуманитарные науки. Он стал юристом и сейчас служит в звании майора милиции. Саня сказал мне примерно следующее:«Вот странный ты человек. Делать тебе больше нечего. Мало тебе задают домашек? Хватит думать о всякой ерунде!». А, надо сказать, думал я, не переставая, и думал много лет, время от времени возвращаясь к этой загадке. Еще будучи школьником, я сделал вывод, что это, вероятнее всего, имеет отношение к великой теореме Ферма (на которую я тоже много раз подолгу смотрел). Шли годы. Ничего не получалось. Озарение не приходило. И я понял, что, вероятно, дальше чем «что-то связанное с теоремой Ферма» я никуда уже не продвинусь. Но не тут то было
Шерлок нашел зацепку
Итак, в 2014 году ехал я в автобусе по Новосибирску. А может быть это было метро. Дорога не близкая. Заняться нечем. И в очередной раз решил я подумать о моей школьной загадке. И вот что я подумал.
Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба
Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!
Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!
Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.
Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!
О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла — прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.
Новая теорема
Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза. Пришло время нарисовать еще одну картинку.
Теорема Пифагора для прямоугольной пирамиды
На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды — это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.
Теорема
Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны — , и площадь грани-гипотенузы — . Тогда
Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.
Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.
Доказательство
Выразим площади через длины векторов .
где .
Площадь представим как половину площади параллелограмма, построенного на векторах и
Как известно, векторное произведение двух векторов — это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
Поэтому
Таким образом,
Что и требовалось доказать!
ЭВРИКА!
Моему восторгу не было границ! Я буквально прыгал от счастья. Конечно, это не бог весть какая сложная теорема, и доказательство очень простое, но ведь сам. И до меня — никто! Я был в этом искренне убежден в течение около года. Попытки найти хоть какие-то свидетельства о том, что это уже известно и доказано терпели неудачу одна за другой, и я думал, что совершил открытие. Это непредаваемое чувство! Я хотел поделиться этой теоремой со всем миром. Говорил о ней друзьям, знакомым математикам, просто знакомым с техническим/математическим образованием и без. Никто не разделял моего восторга и энтузиазма. Всем было попросту безразлично. Будто бы я не придумал и доказал теорему, а просто в магазин за хлебом сходил. Ну и что тут такого? Вот уж действительно… Как говорится, «Как скучно мы живём! В нас пропал дух авантюризма, мы перестали лазить в окна к любимым женщинам, мы перестали делать большие хорошие глупости.» (из фильма «Ирония судьбы»).
Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства — до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.
Послесловие
В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!
Вот ссылка на статью:
Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, — просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!
Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!
Эрудированный читатель в комментариях прислал ссылку
Теорема де Гуа
Выдержка из Википедии
Так что я опоздал не на 18 лет, а как минимум на пару веков!
Источники
Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:
Докажите что грань является прямоугольным треугольником
Тип 13 № 517563
Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.
а) Докажите, что прямые CA1 и AB1 перпендикулярны.
б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.
а) Заметим, что B1 C1 ⊥ C1 A1 как катеты прямоугольного треугольника, и B1 C1 ⊥ C1 C, поскольку призма прямая. Тогда по признаку перпендикулярности прямой и плоскости Кроме того, как диагонали квадрата. AB1 − наклонная, AC1 − ее проекция на плоскость ACA1, − прямая в плоскости перпендикулярная проекции. Тогда по теореме о трёх перпендикулярах что и требовалось доказать.
б) Пусть M − середина AC1. Тогда искомое расстояние равно расстоянию от точки M до прямой AB1, поскольку прямая A1C перпендикулярна плоскости AB1C1. Это расстояние равно половине высоты прямоугольного треугольника AB1C1, проведённой к гипотенузе, то есть
Задание 14(С2) ЕГЭ 2017. Координатный метод
Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Грань ACC1A1 является квадратом.
а) Докажите, что прямые CA1 и AB1 перпендикулярны.
б) Найдите расстояние между прямыми CA1 и AB1, если AC = 4, BC = 7.
а) Введем трехмерную систему координат:
Пусть АС=а, ВС= b , тогда:
Если скалярное произведение векторов равно нулю, то такие векторы перпендикулярны.
прямые и перпендикулярны.
б) Расстоянием между скрещивающимися прямыми называется расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой.
Составим уравнение плоскости :
Подставим найденные коэффициенты в уравнение плоскости:
расстояние между одной из скрещивающихся прямых и плоскостью, проходящей через другую прямую параллельно первой- это длина перпендикуляра, опущенного из любой точки первой прямой на плоскость. Т.е. нам нужно найти расстояние от любой точки прямой до плоскости . Найдем расстояние от точки до плоскости :