Как найти силу тока зная индуктивность и энергию магнитного поля

Согласование импедансов: о пользе формул

Данный цикл статей, начавшийся с практических измерений и чистой эмпирики, хотелось бы завершить рассмотрением некоторых теоретических аспектов, связанных с согласованием импедансов. А также рассмотреть их ценность (практическую, либо иную) с точки зрения любителя электроники, только что перешедшего от навесных проводов и Ардуино к чуть более быстрым микросхемам и устройствам.

Представим 50-омную линию, к которой подключен источник сигнала с внутренним сопротивлением 75 Ом, способный выдавать прямоугольные импульсы с амплитудой сигнала 10 вольт.

Кстати о термине «Амплитуда»

Стандарт «IEC60050 International electrotechnical vocabular», содержащий раздел №103 «Mathematics — Functions», определяет амплитуду, как «maximum value of a scalar sinusoidal quantity» и в качестве примера подчёркивает, что имеет ввиду множитель при косинусе. То есть согласно этому определению, амплитуда — это характеристика синусоиды и отсчитывается она от точки равновесия.

Однако раздел №702 «Oscillations, signals and related devices» данного стандарта содержит термин «Pulse magnitude», хотя и помеченный, как устаревший. Его определение: «a single value, for instance a mean, root mean square or peak value characterizing the aggregate instantaneous values of a unidirectional pulse with respect to the common initial and final value».

А действующий «ГОСТ 26.013-81 Средства измерения и автоматизации. Сигналы электрические с дискретным изменением параметров входные и выходные» определяет термин «Амплитуда сигнала», как «наибольшее значение, достигаемое напряжением (током) за время действия сигнала без учета выброса» и приводит картинку с прямоугольным импульсом и напряжением, принимаемым за амплитуду и измеренным от «подошвы» импульса до максимального его значения (исключая выброс).

В общем, если с амплитудой синусоиды всё понятно — она измеряется от точки равновесия и равна половине напряжения pick-to-pick, то амплитуды всех остальных сигналов пребывают если не в лингвистическом вакууме, то, по крайней мере, в несколько разреженном пространстве терминов.

Также, пускай сопротивление нагрузки будет равно 350 Омам. Просимулируем данную схему (например, в «MicroCap») и посмотрим на напряжения в различных точках линии.

Как видно, напряжения имеют подозрительно целые значения. Посчитаем их. В случае амплитуды сигнала, уходящего из источника в линию всё просто — эта амплитуда получается делением напряжения источника на воображаемом резистивном делителе. Верхняя часть этого делителя — внутреннее сопротивление источника, а нижняя — импеданс линии.

С отражением импульса всё несколько сложнее. Импульс, идущий по линии передачи и набегающий на высокоомную нагрузку можно сравнить с морской волной, ударяющейся об утес. В этой аналогии высота гребня — напряжение, а направление движения воды — ток. Если проследить за напряжением вблизи конца линии, то можно увидеть, что напряжения падающего и отраженного импульса имеют один знак. В тоже время токи падающего и отраженного импульса имеют противоположные знаки, так как ток падающего импульса направлен к нагрузке, а ток отраженного — от нагрузки.

Таким образом мы можем записать два уравнения:

Где Uload и Iload напряжение на приёмнике и ток через него, U + и I + напряжение и ток падающего импульса, U — и I — напряжение и ток отраженного импульса. Разделим одно уравнение на другое:

Теперь вспомним закон Ома:

Или иначе говоря:

Преобразуем формулу (1):

Разделим обе части на Z0 — волновое сопротивление:

Еще раз обратимся к закону Ома:

В данном случае это соотношение справедливо будет и с волновым сопротивлением:

И у нас получается:

Ряд скучных преобразований, по итогу которых мы.

Домножим на знаменатели:

Сгруппируем амплитуды падающего и отраженного импульса:

Вынесем амплитуды за скобки:

Собираем напряжения с одной стороны, а сопротивления — с другой и.

…получим соотношение для вычисления т.н. коэффициента отражения:

При амплитуде источника Usource=10 вольт, внутреннем сопротивлении источника Rsource=75 ом и волновом сопротивлении линии Z0=50 ом, падающий на нагрузку импульс будет иметь амплитуду:

Если Rload=350 ом и Z0=50 ом, то коэффициент отражения будет равен:

Следовательно U — будет равно 3 вольтам, а Uload(напряжение на приёмнике) будет равно сумме напряжений падающего и отражённого импульсов, то есть 7 вольтам.

Как видно из формулы коэффициента отражения, он лежит в диапазоне от «-1» до «+1» и при отрицательных значениях коэффициента, напряжение отражённого импульса будет иметь знак, противоположный знаку напряжения падающего импульса.

Если говорить субъективно и тенденциозно — формула коэффициента отражения и её вывод могут быть полезны в психологическом смысле. Они закрывают гештальт/создают инсайт: позволяют ощутить полное понимание процесса отражения сигнала от концов линии передачи. Также данное знание может поспособствовать успешной сдаче зачёта/экзамена/курсовой в ВУЗе. Возможно, оно также будет полезно, если любитель из мира цифровых микросхем захочет прикоснуться к магии РЧ/СВЧ. В практическом же смысле, вероятность того, что придётся в явном виде подставлять какие-либо значения в эту формулу, занимаясь трассировкой печатной платы, скажем, с микроконтроллером STM32F779 и динамической памятью MT48LC4M16A2 (частоты работы данной связки микросхем — около 100МГц), близка к нулю. Причины тому — широкий выбор различных симуляторов; отсутствие в большинстве подобных случаев значения сопротивления нагрузки, как единственного числа — в неявном виде оно представлено в табличной форме в моделях входных буферов, используемых в симуляторах; а также отсутствия точных аналитических формул для расчёта волнового сопротивления дорожек печатных плат.

Если у нас имеются конкретные значения сопротивления нагрузки и импеданса линии, то мы сможем посчитать коэффициент отражения по формуле и далее вычислить все возможные напряжения в различных точках линии. Но представим, что у нас есть установка с заранее не вполне точно известными параметрами и мы хотим измерить, насколько хорошо нагрузка согласована с линией.

Представим также, что измерить уровень согласования нужно максимально точно и с минимальными финансовыми затратами. И при всём этом, мы с вами являемся попаданцами в дизельпанк 1930-х годов — без симуляторов, векторных анализаторов и «заряженных» цифровых осциллографов. Как нам следовало бы поступить при таких начальных условиях?

Есть физический эффект, который сильно помог бы нам. Пускай у нас есть источник синусоидального сигнал постоянной частоты, фазы и амплитуды. Этот сигнал, отражаясь от несогласованной нагрузки будет возвращаться обратно в линию. В каждой точке линии, в каждый момент времени напряжение будет равно сумме напряжений падающего и отраженного сигналов в этой точке. Так как эти два сигнала движутся по линии навстречу друг другу, а также имеют одну частоту, то в линии будут фиксированные точки, где падающий и отраженный сигналы будут усиливать друг друга. А также будут точки, где они будут взаимоослабляться. То есть образуется так называемая стоячая волна.

Для анимации этой GIF надо щёлкнуть по ней

При максимально несогласованной нагрузке синусоидальный сигнал будет отражаться полностью. И в пучностях (точках сложения амплитуд) амплитуда колебания напряжения будет равна двойной амплитуде падающего сигнала. А в узлах (точках взаимоослабления) колебаний не будет вовсе. При полностью согласованной нагрузке отраженного сигнала не будет, нечему будет складываться и амплитуда колебаний по всей длине линии будет одинакова и равна одной амплитуде падающего сигнала. При частично согласованной нагрузке, в пучностях амплитуда колебаний будет несколько меньше удвоенной амплитуды падающего сигнала, а в узлах — чуть больше нуля. Таким образом, отношение между амплитудой колебаний напряжения в пучности и в узле показывает степень согласования нагрузки с линией передачи.

Данное соотношение называется коэффициентом стоячей волны (КСВ). Запишем его определение в виде формулы:

Вспомним про коэффициент отражения:

И подставим это выражение в формулу КСВ:

Вынесем множитель U + из числителя и знаменателя, а затем сократим его:

И после недолгих преобразований получим:

Но как найти узлы и пучности, скажем, на центральной жиле коаксиального кабеля, а также измерить колебания напряжения на ней? Ведь снаружи центральной жили расположен диэлектрик, а поверх него — экран из фольги. Для этого подойдёт полностью механическое и, соответственно, доступное в 1930-е годы устройство — измерительная линия! По сути, это отрезок коаксиальной линии у которого в качестве диэлектрика используется воздух и имеется длинная прорезь вдоль экрана. В эту прорезь помещён зонд, не касающийся центральной жилы.

Измерительную линию подключают между источником сигнала и нагрузкой. Затем подают сигнал и настраивают контур зондовой головки так, чтобы измеряемые значения стали максимальными. Затем перемещают зонд вдоль центральной жилы, обнаруживают узлы и пучности стоячей волны, и, поделив измеренную амплитуду колебаний в пучности на амплитуду колебаний в узле получают значение КСВ.

Кстати о «щелевых» терминах в электронике

В англоязычной терминологии измерительная линия называется «slotted line». Данный термин очень хочется перевести, как «щелевая линия». Однако термин «щелевая линия» относится к совсем другому объекту. Это такая линия передачи, у которой сигнал подводится к обширному полигону, рассечённый узким вырезом (щелью), а затем распространяется вдоль этой щели. И данный термин переводится на английский язык, как «slot line». Также имеется особый типе антенн — щелевые антенны («slot antenna») — который в ряде случаев представляет из себя волновод с проделанными в нём щелями. Это всё — разные вещи 🙂

Получив значение КСВ, его можно даже не пересчитывать в коэффициент отражения. Если КСВ близок к единице — согласование отличное. Если он измеряется десятками, сотнями или тысячами — всё очень плохо. Также, прямо в КСВ можно нормировать согласование, указывая его значение в технической документации. Вот, к примеру, документация на антенну ANT-GHEL2R-SMA, в которой указан параметр VSWR (КСВН).

Есть, правда, один важный момент. В электронике существует целый класс устройств под общим названием «направленные ответвители». Некоторые из этих устройств способны разделить падающий и отражённый сигналы по отдельным каналам, что позволяет измерить их амплитуды непосредственно.

Естественно, направленные ответвители в той или иной форме пытались адаптировать для измерения отражений в линии и уровня согласования. Так, ещё в 1959 году, в апрельском номере журнала «QST» (одном из старейших журналов о любительской радиосвязи) была опубликована статья «An Inside Picture of Directional Wattmeters», в которой приводилась схема, по сути, КСВ-метра на двух диодах, позволяющая непосредственно сравнивать амплитуды падающего и отраженного сигналов.

Иными словами, коэффициент отражения по измеренным на КСВ-метре значениям, еще 60 лет назад было вычислять чуть проще, чем по тем же значениям вычислять сам КСВ. Помимо того, что в КСВ-метрах на основе направленных ответвителей нет подвижных частей и погрешностей, связанных с механическими перемещениями, важным фактором является 60-летний прогресс в производстве печатных плат и электронных компонентов. Который привел к тому, что применение измерительных линии в настоящее время крайне экзотическое мероприятие.

Причина, по которой КСВ до сих пор применяется при нормировании уровня согласования антенн приблизительно та же, что и причина, по которой фут в ряде стран остаётся актуальной единицей длины — согласование самых первых антенн измерялось именно в КСВ и тех пор это стало традицией.

Если говорить субъективно и тенденциозно — КСВ будет невероятно полезной и актуальной для вас величиной. если вы 25-летний специалист по радиотехнике, рождённый в 1910 году. Измерение же КСВ дорожки, которая соединяет, к примеру, микросхему ПЛИС с микросхемой динамической памяти — действие, трудновыполнимое на практике и крайне странное на уровне идеи.

Волновое сопротивление

Предположим, у вас есть источник синусоидальных колебаний амплитудой Umax. Пускай у данного источника имеется внутреннее сопротивление r. Амплитуда синусоидального тока при коротком замыкании данного источника будет равна:

Теперь представим, что у нас имеется колебательный контур без потерь, которому сообщили некоторую энергию, путём создания на обкладках конденсатора напряжения Umax при нулевом токе через индуктивность. Колебания тока и напряжения будут также синусоидальными. Но, в отличие от предыдущего случая, они будут смещены на 90°, так как энергия будет периодически скапливаться то в конденсаторе, то в индуктивности. Максимальная энергия конденсатора будет равна:

Максимальная энергия в катушке индуктивности будет равна:

Найдём соотношение между амплитудой колебаний напряжения и амплитудой колебаний тока в колебательном контуре. Для этого приравняем энергии:

Домножим на два левую и правую часть:

Оставим слева только квадрат тока:

Извлечём корень из левой и правой части:

Таким образом для заряженного колебательного контура мы получаем некий аналог внутреннего сопротивления:

Теперь предположим, что мы хотим, чтобы колебательный контур максимально быстро отдал накопленную в нём энергию. Для этого присоединим к нему резистор. Какой номинал резистора разрядит контур максимально быстро?

Если номинал будет велик, то мы получим почти тот же самый колебательный контур. Если номинал будет близок к нулю, то ток из катушки индуктивности будет долго-долго течь по ней и по короткому замыканию в обход конденсатора. Очевидно, между нулём и бесконечностью есть некий максимум.

Оставим на некоторое время колебательный контур и вернёмся к источнику напряжения U с внутренним сопротивлением Z0. Определим такое значение нагрузки Rload при котором источник начнёт передавать нагрузке энергию максимально быстро, то есть будет сообщать её максимальную мощность.

При большом Rload ток источника будет мал и мощность будет также мала. При малом Rload ток будет большой, но бо́льшая часть мощности будет выделяться внутри источника. Выведем зависимость мощности, сообщаемой нагрузке от её сопротивления. В целом, мощность равна произведению тока на напряжение:

Ток через нагрузку равен общему току в цепи:

Напряжение на нагрузке получается делением номинального напряжения источника на резистивном делителе, где нагрузка — это нижний резистор:

Таким образом получается выражение для мощности:

Вспомним, что максимумы или минимумы функции находятся в тех точках, где её производная равна нулю (с известными оговорками). Поэтому возьмём производную от Pload. Но сначала вспомним формулу производной отношения двух функций:

Итак. Выносим константу U 2 и применяем формулу для производной:

Обратить всё выражение в ноль может только числитель дроби. Поэтому перепишем его и приравняем к нулю:

Мощность, передаваемая нагрузке будет максимальна тогда, когда сопротивление нагрузки будет равно внутреннему сопротивлению источника. И точно также, максимально быстро энергию из колебательного контура извлечёт резистор, сопротивление которого равно Z0, либо… другой незаряженный колебательный контур с импедансом Z0.

Данные выкладки не столько доказывают, сколько показывают приблизительное направление рассуждений, позволяющих вывести формулу волнового сопротивления длинной линии без потерь (являющейся, по сути, цепочкой колебательных контуров):

. где L — погонная индуктивность, а C — погонная ёмкость линии. Строгий вывод данного соотношения (а также соотношения для линии с потерями) несколько более объёмен и непосредственно связан с так называемыми «Телеграфными уравнениями».

Попробуем вывести аналитические выражения для погонной индуктивности и ёмкости коаксиального кабеля для того, чтобы потом получить аналитическую формулу для вычисления его импеданса.

Прежде чем искать индуктивность кабеля, обсудим несколько понятий и терминов, относящихся к магнитному полю проводников с током. Магнитное поле в каждой точке пространства характеризуется вектором магнитной индукции. Если вокруг проводника с током провести такую замкнутую линию, что вектор магнитной индукции в каждой её точке будет направлен по касательной к ней, то такая линия будет называться силовой линией. Представим себе механическую аналогию: вокруг проводника с током проведена железная дорога, по которой без трения по инерции движется состав из вагонеток. Вектор импульса каждой вагонетки, проходящей через определённую точку — это, условно, вектор магнитной индукции, а сама железная дорога — это силовая линия.

Существует такое важное понятие, которое пригодится нам в дальнейшем, как циркуляция вектора. Применительно к нашей механической аналогии — это совокупный импульс всего состава, движущегося по силовой линии (строго говоря, по любой замкнутой линии и с рядом оговорок, но рассматриваемые нами линии будут совпадать с силовыми). Если мы точно знаем, что рассматриваемая нами силовая линия имеет форму окружности, которая лежит в плоскости, перпендикулярной оси проводника и с центром на этой оси, рассматриваемое нами пространство однородно и, следовательно, в каждой точке силовой линии модуль вектора магнитной индукции одинаковый, то для нахождения циркуляции нам нужно всего лишь умножить магнитную индукцию в точке на длину окружности радиуса r. То есть:

Существует «Теорема о циркуляции магнитного поля», из которой следует, что циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна суммарному току, пронизывающему этот контур. Для меди, алюминия, золота, а также текстолита, воздуха, вакуума, фторопласта, полиэтилена и многих других материалов, коэффициентом пропорциональности является магнитная постоянная μ0 (относительная магнитная проницаемость μ для данных сред очень близка к единице). То есть:

. и выведем уравнение для нахождения модуля вектора магнитной индукции в точке на расстоянии r от проводника:

Данное выражение подходит для случая бесконечно тонкого и бесконечно длинного провода. Попробуем найти закономерность для сплошного цилиндрического проводника ненулевого диаметра, а также проводника в виде трубки.

Предположим, что ток в толще сплошного цилиндрического проводника равномерен. Тогда если мы возьмём силовую линию (контур) радиусом r внутри самого проводника, то ток сквозь данный контур будет равен:

И магнитная индукция внутри проводника будет равна:

То есть с ростом расстояния от оси магнитная индукция будет линейно нарастать до поверхности проводника. Однако дальше ток, охватываемый силовой линией перестанет расти (зафиксировавшись на отметке I) и магнитная индукция начнёт уменьшаться, аналогично случаю с проводом бесконечно малого диаметра.

В случае, если проводником является полая трубка, магнитное поле внутри неё будет отсутствовать, так как контуры, прокладываемые внутри трубки не охватывают никакой ток. Начиная с поверхности трубки, силовые линии будут охватывать ток I. Соответственно, поле будет иметь такие же параметры, как в случае бесконечно тонкого провода или цилиндрического проводника с тем же током и тем же (либо меньшем) радиусом.

В случае коаксиального кабеля возвратный ток будет двигаться по экрану — цилиндрическому проводнику. Прямой ток, ввиду скин-эффекта также будет идти по преимущественно по поверхности центральной жилы. То есть мы имеем суперпозицию полей двух вложенных друг в друга трубчатых проводников.

Внутри центральной жилы магнитное поле экрана будет отсутствовать полностью, а магнитное поле центральной жилы будет тем меньше, чем более выражен будет скин-эффект. Вне коаксиального кабеля и экран и центральная жила будут создавать такое же поле, как у бесконечно тонкого проводника. Но так как ток в проводнике и экране одинаков по силе и противоположен по направлению, то суммарное магнитное поле вне коаксиальной линии будет равно нулю. Таким образом, всё магнитное поле внутри линии будет расположено между поверхностью центральной жилы и экраном. Причём магнитная индукция этого поля будет такая же, как у бесконечно тонкого проводника с током I.

Выше уже приводилась формула, связывающая энергию магнитного поля с индуктивностью и силой тока:

Используя данную формулу и зная энергию магнитного поля и силу тока, можно найти индуктивность:

Энергию магнитного поля также можно вычислить, если известна плотность энергии магнитного поля, которая равна:

Подставляя найденное ранее значение магнитной индукции в данную формулу, мы получим:

Для вычисления энергии магнитного поля в кабеле нужно просуммировать плотность энергии во всех точках, где есть это поле. То есть проинтегрировать плотность энергии по объёму. Но так как нас интересует погонная индуктивность, а не индуктивность всей линии, то и интегрировать нам нужно будет лишь кольцо единичной высоты. Для начала посчитаем энергию одной круговой силовой линии просто умножив плотность энергии в каждой точке линии на длину этой линии:

А затем проинтегрируем энергию всех силовых линий от центральной жилы до экрана:

Так как все переменные не зависят от r, то они в данном случае являются константами и их можно вынести из-под интеграла. Под интегралом останется выражение 1/r, первообразная которого является натуральным логарифмом:

Разность логарифмов можно преобразовывать в отношение их аргументов:

И подставляя значение энергии в формулу для индуктивности, мы найдём зависимость погонной индуктивности от радиусов экрана и центральной жилы:

Теперь определим ёмкость коаксиальной линии

Коаксиальная линия является, по сути, цилиндрическим конденсатором. Для определения ёмкости коаксиальной линии нам пригодится такое понятие, как поток вектора. Говоря крайне условно, для нашего случая, поток вектора через поверхность — это количество силовых линий, пронизывающих эту самую поверхность под прямым углом. Если во всех точках поверхности модуль вектора напряжённости одинаковый и направлен перпендикулярно поверхности, то поток через данную поверхность будет произведением модуля вектора напряжённости на площадь:

Площадь поверхности цилиндра равна длине окружности, умноженной на высоту цилиндра, но так как мы рассматриваем погонную величину, то нас интересует участок единичной высоты.

Итак, поток через соосную цилиндрическую поверхность между центральной жилой и экраном с радиусом r будет равен:

С другой стороны, по теореме Гаусса, поток вектора напряжённости электрического поля ФE через замкнутую поверхность (то есть некую оболочку), пропорционален заряду внутри этой поверхности. Коэффициентом пропорциональности выступает электрическая постоянная ε0 ,а так же диэлектрическая проницаемость среды ε:

Боковая поверхность цилиндра, строго говоря, не является замкнутой оболочкой, но если рассматривается бесконечно длинный цилиндр, то отсутствие/наличие торцов становится не существенно. Поэтому приравнивая два выражения для потока получаем:

То есть напряжённость электрического поля между центральной жилой и экраном на расстоянии r от общей оси будет равна:

Плотность энергии в точке, где напряжённость электрического поля равно E вычисляется по формуле:

Подставляя в формулу плотности энергии выражение для напряжённости электрического поля, мы получим следующее:

Если мы выберем воображаемую окружность радиуса r, соосную кабелю и находящуюся между центральной жилой и экраном, то совокупная энергия электрического поля этой окружности будет равна:

Проинтегрируем (просуммируем) энергию таких окружностей от самой поверхности центральной жилы до экраны, что бы узнать энергию всего кольца:

Взяв данный определённый интеграл мы получим:

Зависимость энергии конденсатора от его ёмкости и заряда определяется уже упоминавшемся выражением:

Так как заряд на обкладках конденсатора пропорционален напряжению, причём коэффициент пропорциональности — это ёмкость, то можно сказать, что:

Таким образом, ёмкость конденсатора будет равна:

Подставим в эту формулу выведенное выше выражение для энергии электрического поля и получим…

Подставляя выражения погонной индуктивности и погонной ёмкости в формулу для волнового сопротивления, мы получим следующее:

Если подставить все константы, то коэффициент будет почти «круглым»:

Как тут не вспомнить шутку с xkcd

Ещё я слышал, что корень четвёртой степени из (9^2 + 19^2/22) равен пи

Ещё я слышал, что корень четвёртой степени из (9^2 + 19^2/22) равен пи

Ссылка на русскоязычный оригинал.

Посмотрим, однако, на следующую иллюстрацию:

Здесь может сразу возникнуть пара вопросов:

Насколько сильно отличается волновое сопротивление пары параллельных проводников от реальной витой пары — скрученной и в оболочке?

По какой формуле считать погонную индуктивность и ёмкость несимметричной копланарной линии с конформной маской?

Проблема в том, что чем сильнее линия отличается от какого-либо симметричного и типового случая, тем более аналитическая формула для вычисления волнового сопротивления такой линии будет обрастать дополнительными условиями и ограничениями. В конечном итоге подобные формулы для реальных дорожек на плате, либо сильно теряют в точности, либо перестают быть чисто аналитическими и становятся полуэмпирической подгонкой под результат. При этом численные методы, при вполне допустимом затрачиваемом времени, показывают погрешность существенно меньше, чем подобные полуэмпирические формулы.

Если говорить субъективно и тенденциозно — с практической точки зрения, инженер, умеющий выводить уравнение волнового сопротивления длинной линии, сможет вычислять это самое волновое сопротивление для дорожек на печатной плате либо столь же быстро и точно, либо медленнее и грубее, чем инженер не умеющий его выводить, но обладающий продвинутым калькулятором импеданса. Причём это «столь же» случится ровно тогда, когда первый инженер также получит в распоряжение продвинутый калькулятор.

Если же говорить об инженере, который сам пишет калькулятор импеданса, то следует обратить внимание на хабростатью «Написание МКЭ расчетчика в менее чем 180 строк кода» с применением метода конечных элементов для анализа механических деформаций и напряжений. Даже по столь учебному примеру видно, что знание одних телеграфных уравнений — это лишь малая часть необходимого бэкграунда для создания качественного калькулятора импеданса.

Можно предположить, что вывод формулы волнового сопротивления позволит обрести инженеру некое понимание и интуицию. Например, он будет знать, что увеличив толщину платы с микрополоском, он уменьшит погонную ёмкость линии, так как ёмкость плоского конденсатора равна:

И, помня о формуле.

. он увеличит, тем самым, волновое сопротивление. Однако количество физических параметров копланарной линии в зависимости от детализации составляет всего от 5 до 8 штук. Ввод этих параметров в калькулятор, а затем изменение по очереди каждого из них (с целью понимания степени влияния на волновое сопротивление) займёт кратно меньше времени, чем вывод формул. Уровень же развития инженерной интуиции при этом будет приблизительно одинаков.

Наконец, можно предположить, что формула волнового сопротивления окажется полезной при измерении волнового сопротивления, скажем, коаксиального кабеля — с измерением параметров L и С. Однако раздел №7 стандарта «ГОСТ 27893-88 Кабели связи. Методы испытаний» предписывает присоединить к измеряемому кабелю с одной источник сигналов с измерителем отражений, а с другой — переменную нагрузку. И изменять её значение до тех пор, пока отражения не станут минимальны. Так, пункт 7.3.4 данного стандарта прямо сообщает «Волновое сопротивление отсчитывают по настроенному на испытуемый кабель нагрузочному контуру». То есть измерение волнового сопротивления осуществляется прямым методом, минуя измерения L и C.

Поэтому ценность соотношения.

. видится далеко не абсолютной.

Заключение

Согласование импедансов в контексте обеспечения целостности сигнала не является герметично изолированным разделом электроники, так что технически, данный цикл можно было бы продолжить и осветить вопросы:

Из чего состоят модели IBIS и IBIS-AMI? Как их сделать своими руками, в том числе, по имеющейся микросхеме?

Что такое диаграмма Смита и S-параметры, почему их так часто упоминают в контексте согласования импедансов, когда знание данных понятий может быть полезным и в каком случае оно окажется бесполезным?

Как устроены приёмники и передатчики дифференциальных сигналов? Как проводить дорожки для этих сигналов (дифференциальные пары) и как согласовывать эти дифференциальные пары?

Однако, в то же время, ответы на вышеуказанные вопросы содержат в себе значительный объём информации из смежных разделов, достаточно сильно отходя от первоначальных задач данного цикла, вроде ответа на вопрос «как избавиться от «звона» в моём SPI?».

Выражаю надежду, что:

мне удалось в достаточной мере осветить понятие «Согласование импедансов» для тех, кто совсем недавно столкнулся с необходимостью обеспечения целостности сигналов.

Задачи по теме «Энергия магнитного поля» с решением

Задачи по теме «Энергия магнитного поля» с решением

Продолжаем цикл статей о решении физических задач. Сегодня разберем несколько примеров на тему «Энергия магнитного поля».

Скучно решать задачи? Загляните на наш телеграм-канал, там много интересной и полезной информации для всех учащихся. А если хотите получить скидку на наши услуги, подписывайтесь на второй канал с приятными бонусами и акциями!

Энергия магнитного поля: задачи

Как решать физические задачи? Специально для новичков мы подготовили общую памятку, а также собрали вместе более 40 формул, которые обязательно пригодятся в учебе.

Кстати, в нашем блоге уже есть статья с задачами на ЭДС самоиндукции и закон Фарадея. Всех интересующихся – милости просим.

Задача на энергию магнитного поля №1

Условие

Какова энергия магнитного поля соленоида, если по его обмотке индуктивностью L=0,2 Гн протекает ток I=10 А.

Решение

По определению, энергия магнитного поля равна:

Подставим значения, и вычислим:

W = 0 , 2 · 10 2 2 = 10 Д ж

Ответ: 10 Дж.

Задача на энергию магнитного поля №2

Условие

Сила тока I в обмотке соленоида равна 1 А, а магнитный поток Ф через его поперечное сечение равен 0,1 мВб. Вычислить энергию магнитного поля соленоида, если он содержит N=1000 витков.

Решение

Для нахождения энергии магнитного поля будем использовать формуду из первой задачи. Очевидно, для вычисления нужно найти индуктивность. Выразим ее с помощью такой величины, как потокосцепление – суммарный магнитный поток, сцепляющийся со всеми витками катушки:

ψ = L I = N Ф L = N Ф I

Подставим это выражение в формулу для энергии магнитного поля и высчислим ответ:

W = L I 2 2 = N Ф I 2 I · 1 2 = N Ф I 2 W = 1000 · 0 , 1 · 10 — 3 · 1 2 = 0 , 05 Д ж

Ответ: 0,05 Дж.

Задача на энергию магнитного поля №3

Условие

Плотность энергии w магнитного поля в железе равна 200 Дж/м3 при индукции поля B, равной 1 Тл. Какова магнитная проницаемость μ железа?

Решение

Запишем выражение для плотности энергии магнитного поля:

Выразим отсюда магнитную проницаемость и произведем вычисления:

μ = B 2 2 μ 0 w = 1 2 2 · 1 , 26 · 10 — 6 · 200 = 2 · 10 3

Ответ: 2 · 10 3

Задача на энергию магнитного поля №4

Условие

Найти энергию магнитного поля соленоида, индуктивность которого 0,04 Гн, а магнитный поток через него составляет 0,5 Вб.

Решение

В данном случае для применения формулы W = L I 2 2 не хватает величины I. Преобразуем данную формулу. Вспомним, что:

Теперь первоначальную формулу для энергии магнитного поля можно записать в виде:

W = L 2 · Ф 2 L 2 = Ф 2 2 L W = 0 , 5 2 2 · 0 , 04 = 3 , 125 Д ж

Ответ: 3,125 Дж.

Задача на энергию магнитного поля №5

Условие

Какой должна быть сила тока в катушке с индуктивностью 0,8 Гн, чтобы энергия магнитного поля оказалась равной 2 Дж?

Решение

Запишем формулу для энергии магнитного поля и выразим из нее силу тока:

W = L I 2 2 I = 2 W L

Подставим значения из условия в формулу для силы тока и вычислим:

I = 2 · 2 0 , 8 = 5 = 2 , 23 А

Ответ: 2,23 А.

Вопросы на тему «Энергия магнитного поля»

Вопрос 1. Что такое энергия магнитного поля?

Ответ. Магнитное поле обладает энергией. Эта физическая величина показывает, какую работу ток в проводнике (катушке индуктивности) затрачивает на создание данного магнитного поля. Энергия магнитного поля тока вычисляется по формуле:

Вопрос 2. Что такое объемная плотность энергии магнитного поля?

Ответ. Объемная плотность энергии магнитного поля определяет энергию поля в единице объема. Формула, выведенная Максвеллом для объемной плотности энергии магнитного поля соленоида:

Вопрос 3. От чего зависит энергия магнитного поля?

Ответ. Энергия магнитного поля прямо пропорциональна индуктивности.

Вопрос 4. Что такое индуктивность?

Ответ. Индуктивность – физическая величина, коэффициент пропорциональности между силой тока в контуре и магнитным потоком через контур, создаваемым данным током.

Индуктивность также называют коэффициентом самоиндукции, она характеризует магнитные свойства электрической цепи (контура, катушки и т.д.)

Вопрос 5. Как можно переписать формулу для энергии магнитного поля?

Ответ. Формула может быть записана в виде:

W = L I 2 2 = Ф I 2 = Ф 2 2 L

Нужна помощь в решении задач или любых других заданий по учебе? Профессиональный сервис для студентов всегда готов поспособствовать с их решением.

  • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
  • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
  • Реферат от 1 дня / от 840 р. Узнать стоимость

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Электромагнитная индукция: суть явления, закон Фарадея, формулы

Электромагнитная индукция – это очень важное физическое явление, используемое в работе многих устройств, таких как трансформатор, генератор переменного напряжения, индукционная плита. Оно также имело большое теоретическое значение – привело к открытию электромагнитной волны.

Фарадея, первооткрывателя явления электромагнитной индукции, посетил в своей лаборатории министр финансов Великобритании и спросил:

  • ” Какую пользу человечество получит от вашего исследования? “
  • ” Трудно судить, но я уверен, что вы будете собирать с этого налоги. “

Он не ошибся – НДС в той же Великобритании добавляется к цене электроэнергии, поставляемой в дом.

Приведенный выше список применений, хотя и неполный, впечатляет. Они, безусловно, присутствуют в нашей жизни и являются инженерными разработками явления электромагнитной индукции.

В чем заключается явление электромагнитной индукции?

В общем смысле явление электромагнитное индукции заключается в генерации электрического тока с помощью магнитного поля.

Скажем точнее, явление электромагнитной индукции заключается в образовании электродвижущей силы (ЭДС) в проводнике в результате изменения потока магнитного поля, пронизывающего поверхность, охватывающую проводник. В замкнутой цепи электродвижущая сила (ЭДС) вызывает протекание электрического тока.

В приведенном выше определении явления могут быть неясными два понятия – ЭДС индукции и магнитный поток.

ЭДС индукции.

Абсолютная величина электродвижущей силы ( ЭДС индукции с символом εинд ) есть работа внешней силы Az, которая вызывает перемещение единичного заряда по цепи. Следовательно: | εинд | = Az / q .

Как видите, в определении мы использовали абсолютное значение ЭДС индукции. Это потому, что оно может быть отрицательным, при определенных ситуациях. С другой стороны, работа внешних сил, согласно принципу сохранения энергии, всегда, при генерации электрического тока, должна быть положительной.

Определение потока магнитной индукции.

Поток магнитной индукции B через поверхность S называется скалярным произведением векторов B и S : dФ = B * S * cos α , где α – угол между двумя векторами, а S – вектор, перпендикулярный поверхности S с величиной, равной площади этой поверхности.

Магнитный поток будет меняться при изменении любой величины, входящей в формулу – площади поверхности, значения магнитной индукции, угла между площадью поверхности и вектором индукции – при сохранении постоянства остальных переменных. Конечно, все эти величины могут изменяться одновременно, но таким образом, что их произведение не остается постоянным.

О том, что электрический ток является источником магнитного поля, было известно с 1820 года (работа Орстеда). Фарадей задался вопросом, не верно ли и обратное – не может ли магнитное поле быть источником (причиной) электрического тока. Однако дело оказалось не таким простым. Только в 1831 году ученый наблюдал это явление при определенных особых обстоятельствах. Оказалось, что при стабильных условиях электрический ток не возникает.

Почему это происходит? Даже в очень сильном, но постоянном во времени магнитном поле электрический ток не будет течь в замкнутой цепи “сам по себе”. Он течет только тогда, когда мы соответствующим образом перемещаем контур или изменяем магнитное поле, в котором находится контур.

Когда Фарадей обратил внимание на условия, при которых в присутствии магнитного поля возникает электрический ток, он провел десятки экспериментов, которые обобщил и из которых сделал количественные выводы в виде закона электромагнитной индукции. Мы не будем здесь говорить об этом законе, а сосредоточимся только на сути явления электромагнитной индукции. Мы попытаемся увидеть двойственность этого явления, т.е. то, что оно имеет две разновидности, и ответить на вопрос, почему электрический ток течет при определенных условиях.

Мы рассмотрим, какие силы вызывают индукционный ток, т.е. какие силы действуют на свободные заряды в проводнике, заставляя их двигаться.

Эксперимент Фарадея 1831 года, демонстрирующий электромагнитную индукцию между двумя катушками (см. рисунок 1).

Справа находится аккумулятор, питающий меньшую из двух катушек (A), которая создает магнитное поле. Когда эта катушка находится в состоянии покоя, индукционный ток не наблюдается. Однако если переместить его внутрь большей катушки (B), переменный магнитный поток индуцирует в ней ток. Мы обнаруживаем это, наблюдая за колебаниями стрелки гальванометра (G) слева.

Эксперимент Фарадея

Рис. 1. Эксперимент Фарадея 1831 года, демонстрирующий электромагнитную индукцию между двумя катушками (см. рисунок 1). Источник: J. Lambert [Public domain], Wikimedia Commons)

Закон электромагнитной индукции Фарадея

Явление электромагнитной индукции описывается законом Фарадея, первооткрывателя и исследователя этого явления.

Представьте себе простейший контур с подвижной стороной, помещенный в магнитное поле так, чтобы поверхность контура была перпендикулярна линиям магнитного поля (рис. 2.).

Контур с подвижной стороной, помещенный в магнитное поле

Рис. 2. Контур с подвижной стороной (перекладиной)

Мы перемещаем контур со скоростью v вправо. Это изменяет поток магнитной индукции, пронизывающий поверхность, охватываемую контуром, обозначенным на рисунке более темным цветом.

Вспоминая определение магнитного потока индукции, мы можем понять, почему изменяется поток ФB (рис. 2) – потому что, значение площади S поверхности увеличивается .

Вследствие изменения потока магнитной индукции в рассматриваемой цепи возникнет электродвижущая сила индукции и, следовательно, потечет электрический ток.

Внешняя сила уравновешивает электродинамическую силу

Рис. 3. Внешняя сила F z уравновешивает электродинамическую силу Fed , действующую на контур, движущийся с постоянной скоростью v

В рассматриваемом нами случае легко вычислить работу внешней силы, предполагая постоянную скорость движения контура. Внешняя сила Fz действует в соответствии со смещением контура (и вектором скорости) и в любой момент уравновешивает электродинамическую силу (силу Ампера) Fed , действующую в противоположном направлении (рис. 3.). Согласно определению работы Az = F * Δx где Δx – смещение контура во времени Δt.

Величина силы Fz равна величине электродинамической силы (силе Ампера) Fed, действующей на контур. Поэтому Az = I * L * B * Δx, где – I сила индукционного тока, протекающего в цепи (и в контуре), L – длина контура (той части, где протекает электрический ток), B – величина магнитной индукции. Давайте введем наше выражение в определение ЭДС индукции. Зная, что q = I * Δt, получаем:

| εинд | = Az / q = I * L * B * Δx / I * Δt = B * L * Δx / Δt = B * ΔS / Δt = dФB / dt.

Мы получили интересный результат. Абсолютное значение ЭДС индукции равно скорости изменения потока магнитной индукции.

В рассматриваемом здесь случае поток магнитной индукции изменяется равномерно во времени. В общем случае это совсем не обязательно. Вот почему мы пишем: εинд = ΔФB / Δt , где Δt → 0, который в сокращенном виде записывается как dФB / dt . Это производная магнитного потока по времени.

Хотя наш вывод формулы относится к одному примеру, оказывается, что выведенное отношение является общим. Необходимо сделать лишь небольшую поправку. Это знак минус, который связан с определенной условностью и принципом сохранения энергии.

Таким образом, закон электромагнитной индукции Фарадея записывается следующим образом: εинд = – dФB / dt и формулируется так:

Для любого контура индуцированная электродвижущая сила (ЭДС) равна скорости изменения магнитного потока, проходящего через этот контур, взятой со знаком минус.

Википедия

Знак “минус” означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт отражён в правиле Ленца.

Этот закон верен независимо от того, как изменяется поток магнитного поля; когда изменение вызвано относительным движением источника магнитного поля и контура, или когда движения вообще нет, но значение магнитной индукции меняется.

Закон Фарадея – это универсальный, всеобъемлющий и полный математический отчет о явлении электромагнитной индукции.

Вернемся на мгновение к нашему примеру и отметим, что скорость изменения потока, а значит и абсолютное значение ЭДС индукции, в данном случае равна произведению B*L*v. Это следует из ранее написанных соотношений, а именно:

| εинд | = Az / q = I * L * B * Δx / I * Δt = B * L * Δx / Δt = B * L * ( Δx / Δt ) = B * L * v .

Правило Ленца.

Правило Ленца позволяет быстро и легко определить направление индукционного тока. Это действительно одна из форм принципа сохранения энергии. Правило гласит, что индукционный ток, наведенный в проводнике под действием переменного потока магнитной индукции, всегда имеет такое направление, что магнитное поле, создаваемое этим индукционным током, противодействует причине (т.е. изменению потока магнитного поля), которая его вызвала.

Пример задачи

Контур в форме квадрата со стороной d = 0,5 м “втягивается” с постоянной скоростью v = 4 м/с в область однородного магнитного поля, величина индукции которого B = 1 Тл (см. рис. 4). Электрическое сопротивление цепи равно R = 2 Ом.

Пример задачи по электростатической индукции

Рис. 4. Пример задачи по электростатической индукции

Нам нужно найти ответы на следующие вопросы:

a) Когда (в какой момент/моменты) в рамке будет протекать электрический ток?

б) Определите направление этого электрического тока.

(в) Вычислите значение силы, действующей на рамку при ее перемещении в соответствии с направлением вектора скорости. Предположите отсутствие механического сопротивления движению.

Решение.

(a) Индукционный ток протекает при изменении потока магнитной индукции через поверхность, охваченную контуром. В ситуации, показанной на рисунке 4, магнитный поток равен нулю и будет оставаться таковым до тех пор, пока правый край контура не коснется границы области магнитного поля. Затем, по мере движения контура, он будет все больше и больше заполняться магнитным полем – магнитный поток будет увеличиваться. Поэтому выполняется условие электромагнитной индукции, т.е. начинает протекать индукционный ток. Как долго? Это легко вычислить, поскольку движение рамы равномерно:

t = d / v = 0,5 / 2 = 0,25 секунд

Ток будет течь до тех пор, пока весь квадрат не войдет в магнитное поле. Тогда поток будет ненулевым, но больше не будет меняться.

б) Воспользуемся правилом Ленца. Мы уже заметили, что поток магнитной индукции при “втягивании” контура в магнитное поле увеличивается. Поэтому индукционный ток будет протекать в таком направлении, чтобы противодействовать увеличению потока.

Магнитное поле, создаваемое индукционным током с вектором индукции Bинд , будет противоположно вектору B .

Таким образом, вектор Bинд направлен в нашу сторону. Если расположить таким образом большой палец правой руки, остальные согнутые пальцы покажут направление индукционного тока. Ток будет течь против часовой стрелки.

(в) Снова воспользуемся равномерностью движения рамы. Обратите внимание, что сила, которая действует на рамку при ее перемещении по вектору скорости (например, сила моей руки), не может быть единственной силой, действующей на квадрат. Если бы это было так, он бы двигался с ускорением. Поскольку движение равномерное, это означает, что в каждый момент времени существует сила, которая уравновешивает силу моей руки. Это и есть электродинамическая сила. Ведь теперь в рамке течет ток, и часть его протекает в магнитном поле (см. рис. 5).

Часть тока течет в магнитном поле

Рис. 5

Красная стрелка показывает направление электрического тока. Электродинамическая сила (сила Ампера) действует слева (я определил ее с помощью правила трех пальцев). На верхнюю часть рамки и нижнюю часть также действуют электродинамические силы, но они аннулируют друг друга.

Подведем итог: электродинамическая сила уравновешивает силу моей руки. Таким образом, я могу сравнить значения обеих сил, то есть F = Fed = B * I * d, где I – сила индукционного тока. Теперь достаточно рассчитать значение силы этого тока. Мы будем использовать закон Фарадея и закон Ома для участка цепи. Давайте начнем с последнего: поскольку нас интересует только значение I, мы напишем

| εинд | = ΔФB / Δt = Δx * d * B / Δt = ( Δx / Δt ) * d * B = v * d * B .

После подстановки в I получаем: I = εинд / R = v * d * B / R .

В конечном итоге искомое значение силы будет выражено через: Fed = B * I * d = ( B * d * v * d * B ) / R = ( B 2 * d 2 * v ) / R .

Подставляя численные значения получим: Fed = F = ( 1 2 * 0,5 2 * 4 ) / 2 = 0,5 Н .

Энергия магнитного поля тока

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.

Получите невероятные возможности

Конспект урока «Энергия магнитного поля тока»

«Искусство экспериментатора состоит в том,

чтобы уметь задавать природе

вопросы и понимать её ответы».

Майкл Фарадей

Задача 1. Какой должна быть сила тока в катушке с индуктивностью 20 мГн, чтобы энергия магнитного поля составляла 5 Дж?

Энергия магнитного поля определяется по формуле

Из данной формулы выразим искомую силу тока

Ответ: 22,4 А.

Задача 2. На катушке с индуктивностью 80 мГн поддерживается постоянное напряжение 12 В. Известно, что сопротивление катушки равно 3 Ом. Найдите энергию, которая выделится при размыкании цепи. Также найдите ЭДС самоиндукции в катушке, предполагая, что размыкание произошло за 10 мс.

Энергия магнитного поля определяется по выражению

Запишем закон Ома для участка цепи

Тогда с учётом закона Ома энергия магнитного поля равна

Запишем закон самоиндукции

При размыкании цепи изменение силы тока будет равно току, протекавшему в цепи. Знак минус означает, что сила тока уменьшилась

Ответ: Энергия магнитного поля – 0,64 Дж; ЭДС самоиндукции – 32 В.

Задача 3. Соленоид длиной 40 см содержит 5 витков на каждый сантиметр. Найдите энергию магнитного поля при силе тока в 5 А, если при этом магнитный поток через поперечное сечение соленоида равен 10 мВб.

Энергия магнитного поля определяется по формуле

Индуктивность соленоида равна отношению магнитного потока к силе тока. В данном случае, это соотношение умножается на число витков, поскольку такой индуктивностью обладает каждый виток соленоида

Тогда с учётом последней формулы получаем

Количество витков можно определить по формуле

Ответ: 5 Дж.

Задача 4. При увеличении силы тока в катушке от 3 А до 8 А, энергия магнитного поля возросла на 20 Дж. Найдите индуктивность этой катушки.

Энергия магнитного поля определяется по формуле

Применим эту формулу для начальной и конечной силы тока

Изменение энергии магнитного поля можно рассчитать по формуле

Ответ: 0,73 Гн.

Задача 5. Катушка с индуктивностью 0,5 Гн включена в цепь. В цепи произошёл скачок напряжения, изображённый на графике. Известно, что при этом скачке в катушке возникла ЭДС самоиндукции 10 В. Как изменилась энергия магнитного поля?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *