Детекторный радиоприемник
А — Ампер, единица измерения силы тока.
В — Вольт, единица измерения напряжения.
Вт – Ватт, единица измерения мощности.
Гн – Генри, единица измерения индуктивности.
ДРП – детекторный радиоприемник.
Др.- другие.
КПД – коэффициент полезного действия.
КПЕ – конденсатор переменной емкости.
УГО – условное графическое обозначение.
Ф — Фарада
ЭАП — электроакустический преобразователь.
Е — напряженность электрического поля радиостанции в месте приема.
m — коэффициент модуляции.
Q — добротность колебательного контура.
W – мощность.
Введение
В настоящее время известно множество типов радиоприемников: детекторный, прямого усиления, регенеративный, сверхрегенеративный, супергетеродинный и прямого преобразования. Из перечисленных, детекторный радиоприемник (далее по тексту — ДРП), имеет наихудшую чувствительность и селективность, но, несмотря на невысокие параметры, он представляет интерес для начинающих радиолюбителей и специалистов.
Простота конструкции, недефицитность деталей и отсутствие источников питания (именно поэтому ДРП изучается в средних учебных заведениях в наше время) способствовали его популярности в 20-40гг 20в. Дадим определение ДРП: это приемник, работающий за счет энергии радиоволн и не имеющий усилителя. Следует заметить, что приемник прямого усиления – это тот же детекторный с каскадами усиления сигнала низкой частоты.
1. Классическая схема ДРП
Рис.1. Типовая схема ДРП
Существует два основных варианта классических схем ДРП. Первый вариант изображен на рис.1. Второй вариант отличается от первого только тем, что детекторный диод подключен не к части контура, а к контуру полностью.
1.1. Функциональная схема ДРП
Рис. 2. Функциональная схема классического ДРП.
Радиотракт включает в себя входные цепи приемника: антенна, заземление, колебательный контур. Детектор — каскад детектирования на точечном диоде и сглаживающий конденсатор С2. Электроакустический преобразователь (ЭАП) служит для преобразования электрического сигнала в звуковой. В качестве ЭАП используются: наушники, электродинамические громкоговорители («динамики»).
1.2. Принцип работы ДРП
Настроив контур на частоту принимаемой радиостанции, выделяем высокочастотный АМ — сигнал. Частота его колебаний велика (более 100 кГц), и в наушниках он слышен не будет. Сигнал нужно продетектировать (преобразовать ВЧ электрические колебания, в колебания НЧ). Для этого служит диод VD 1 (рис.1). Он обладает свойством проводить ток только в одном направлении, от анода, обозначенного треугольником, к катоду. Положительные полуволны колебаний в контуре вызовут ток через диод, а отрицательные закроют его, и тока не будет. При отсутствии конденсатора C 2 через наушники будет протекать пульсирующий ток. Он содержит постоянную составляющую, которая изменяется со звуковой частотой. Такой ток уже вызовет в наушниках звук. Процесс детектирования улучшается при подсоединении блокировочного конденсатора C 2. он заряжается положительными полуволнами почти до амплитудного значения колебаний, а в промежутках между ними сравнительно медленно разряжается током через наушники.
2. Компоненты ДРП
2.1. Колебательный контур
Классическая схема ДРП изображена на рис. 1. Она повторяется во многих популярных книжках и журналах. Антенна WA 1 и заземление присоединены к колебательному контуру (катушка L 1 и КПЕ C 1). Колебательный контур служит для выделения из всей массы принимаемых сигналов лишь одного, желаемого. Если частота сигнала совпадает с частотой настройки контура, напряжение на нем максимально. Для настройки в пределах диапазона изменяют емкость (используют КПЕ), для переключения диапазонов изменяют индуктивность катушки L 1.
2.2. Диод
По применению полупроводниковые диоды разделяются на группы: выпрямительные, высокочастотные, туннельные и некоторые другие (рис.2).
В качестве полупроводникового материала в диодах используется германий, кремний и арсенид галлия (в туннельных диодах).
Первые диоды стали известны с начала 20в (1906-1908 гг). Тогда же и появились первые ДРП. В 20-40гг 20в радиолюбители изготавливали детекторные диоды из кристаллов цинкита или пирита. В России пионерные работы по диодам проводил О.Лосев, который помимо детекторных диодов изготовил и первые светодиоды (он наблюдал свечение кристалла карборунда при подключении к нему батареи питания). В классических ДРП используются германиевые диоды Д2, 18,20, как самые дешевые и широко распространенные.
2.3. Конденсаторы
В классической схеме ДРП два конденсатора. С1 – переменный керамический или воздушный, предназначен для настройки приемника на частоту радиостанции (5-300 пФ). С2 нужен, чтобы убрать ВЧ – составляющую и повысить качество звука (2000 – 6800 пФ).
2.4. Головные телефоны
В России первым в приемнике высокоомные головные телефоны использовал П.Н.Рыбкин в 1899 г. За рубежом работами по усовершенствованию ДРП в эти же годы занимался Г.Маркони.
Последний элемент разбираемой схемы ДРП – головные телефоны. Для ДРП подходят только высокоомные телефоны (ТА-4, ТОН-2, ТОН-2М, ТАГ-1, ТГ-1), абсолютно не подходят низкоомные или наушники от плейера. Параметры некоторых из них приведены в Приложении 1.
Для телефонов ТОН-2 сопротивление на частоте 1000 Гц составляет 12000 Ом. Минимальная амплитуда сигнала 1000 Гц, слышимая человеком в наушниках ТОН-2 составляет 5 мВ. В классическом ДРП амплитуда сигнала на наушниках достигает 20 мВ (достаточно громко и разборчиво слышна речь и музыка), что соответствует электрической мощности 0,02 мкВт.
3. Недостатки классической схемы детекторного приемника
а) Для согласования сопротивлений колебательного контура и диода используется катушка связи (обычно 1/5-1/10 от числа витков катушки).
Следовательно, на диод поступает ВЧ напряжение в 5-10 раз меньшее, чем наводится в контуре, то есть, с большими потерями мощности (в 25-100 раз).
б) Используется энергия одного полупериода сигнала.
в) Головные телефоны сильно искажают сигнал и имеют низкий КПД (из-за металлической мембраны). Головные телефоны малоэффективны при работе на низких частотах, из-за жесткой мембраны не работают на высоких звуковых частотах. Рабочий диапазон частот наушников 300-3500 Гц. Получить качественный звук в этом случае просто невозможно.
4. Применение классического ДРП.
ДРП, выполненный по классической схеме, и в наше время находит применение для: настройки радиолюбительских передатчиков и настройки передатчиков систем электронного дистанционного управления. В любительской литературе описано успешное применение ДРП для поиска маломощных шпионских закладок (в просторечии именуемых «жучками»). В этих случаях нагрузкой ДРП работает микроамперметр постоянного тока на 10-100 мкА, шунтированный конденсатором.
5. Совершенствование ДРП
Если посмотреть на функциональную схему ДРП, можно прийти к следующим выводам: классическая схема свои возможности усовершенствования исчерпала. Кардинальное улучшение параметров ДРП возможно при полной переделке всех функциональных узлов ДРП, собранного по классической схеме.
5.1. Громкоговорящий ДРП
Добиться увеличения громкости и улучшения качества сигнала можно модернизацией всех узлов классического ДРП. В качестве колебательного контура выступает катушка индуктивности на ферритовом стержне. Эта катушка имеет межвитковую емкость, а настройка на радиостанцию производится перемещением катушки на сердечнике. Более оптимальное согласование детектора с контуром производится конденсатором связи С1 (сопротивление контура сотни килоом, а детектора 5-20 кОм). Замена одного диода диодным мостом позволяет увеличить громкость ЭАП, так как теперь в ДРП используется энергия обоих полупериодов ВЧ сигнала. Диодный мост выполнен на диодах типа Д310, так как у них меньше сопротивление и меньше потери, чем у диодов Д2, 18, 20.
Рис.4 Прибор для выбора детекторного диода
О качестве диода позволяет судить параметр — «прямой ток при напряжении 1 В», чем он больше, тем лучше.
Рис.5 Усовершенствованный классический ДРП
В качестве ЭАП используется динамик мощностью 1-8 Вт и сопротивлением катушки 4-8 Ом. Для согласования сопротивлений детектора и ЭАП служит понижающий трансформатор (
220 В/9-12 В). Для увеличения отдачи динамик устанавливается на отражательный экран. Модернизированный ДРП дает выигрыш по мощности относительно классической схемы ДРП в 140-400 раз.
5.2. Применение модернизированного ДРП.
Улучшенный ДРП является практически вечным источником бесплатной энергии «из воздуха». Он питает светильник на сверхъярком светодиоде (белом или желтом) и способен подзарядить аккумулятор, часовую батарейку или пальчиковую (типа АА или ААА) из будильника или пейджера. Он может найти применение в местах, где нет электричества, например, в коллективных садах (в доме и овощной яме), в горах. Если от него запитать светильник на сверхъярком красном светодиоде (2-10 кд), он заменит медицинский аппарат светотерапии «Дюна-Т». Также от него можно питать «серебряный ионатор» — прибор для серебрения воды.
Рис.6 ДРП – источник электрической энергии.
Накопительный конденсатор С2 рассчитан на рабочее напряжение 25-60 В при минимальном токе утечки. Приемник настраивается на самую мощную СВ или ДВ радиостанцию в этом регионе.
5.3. ДРП, питаемый «свободной энергией поля»
Для более полного использования энергии несущей, модернизированный ДРП дополняется каскадом усиления на германиевом транзисторе. И данный приемник работает громче. Теперь он стал приемником прямого усиления.
Рис.7 ДРП (приемник прямого усиления) с увеличенным КПД.
Транзистор в усилителе приемника низкочастотный и маломощный: МП39-42. Сигнал ЗЧ на базу подается через разделительный конденсатор С3. ЭАП приемника состоит из динамика ВА1, включенного через согласующий трансформатор Т1.
Настройка этого приемника сводится к настройке входного контура на частоту мощной радиостанции и одновременной подстройке емкости С1, а затем подбору сопротивления R 1 по максимальной громкости звучания.
6. Экспериментальная часть
6.1. Сборка и наладка модернизированного ДРП.
Для собранного по рис.5 модернизированного ДРП и настроенного перемещением катушки по стержню на радиостанцию «Радио России» (длина волны 260 кГц – диапазон ДВ) вольтметр на выходе приемника показал напряжение 0,25 В. После согласования сопротивлений контура и детектора согласующим конденсатором вольтметр показал 2,35 В. Затем был подключен ЭАП: динамик 6ГД-3. Полоса воспроизводимых частот 6ГД-3: 100-10000 Гц. Громко и с высоким качеством слышна музыка и речь. Антенна: медный провод диаметром 0,5 мм и длиной 8 метров. В качестве заземления использована батарея центрального отопления. Если вместо ЭАП включали сверхъяркий желтый светодиод, то наблюдали его яркое свечение!
Таким образом, все мои предположения подтвердились. Улучшенный ДРП может работать в качестве практически вечного источника энергии. Громкость звучания этого приемника можно дополнительно увеличить при использовании рупора, установленного на ЭАП.
При замене ДВ катушки на более высокодобротную на выходе приемника было получено напряжение 5,30 В и громкость приемника значительно возросла. Дальнейшее увеличение громкости приемника можно получить за счет применения более эффективной антенны.
6.2. Сборка и наладка ДРП с каскадом усиления на транзисторе (питаемый энергией электромагнитной волны).
Приемник собранный по рис.7 работал значительно громче, чем модернизированный ДРП. И это естественно, так как транзисторный усилитель НЧ питается постоянной составляющей сигнала, а она в 3-10 раз выше, чем НЧ составляющая, вдобавок транзистор усиливает слабый НЧ сигнал.
Приложение
Таблица 1 Электрические параметры высокоомных телефонов типа ТОН-2
Основные параметры
Значение параметра
Модуль полного электрического сопротивления переменному току одного телефонного капсюля на частоте 1000 Гц, не менее, Ом
Неравномерность частотной характеристики отдачи капсюля в диапазоне частот 300-3000 Гц, не более, дБ
Таблица 2 Электрические параметры детекторных диодов
Тип диода
Назначение
Среднее значение выпрямленного тока, мА
Прямой ток при напряжении 1 В, мА
Обратный ток не более, мА (при напряжении, В)
Наибольшее допустимое обратное рабочее напряжение, В
Наименьш. амплитуда обратного пробивного напряжения , В
Выпрямление переменных напряжений
* Диоды Д2 предназначены для работы в различных схемах. Оформлены в стеклянном корпусе. Предельная рабочая частота 150 МГц при температуре окружающей среды от –60 до +70 О С. Емкость между выводами при обратном напряжении на диоде – 1 пФ.
Таблица 3 Параметры громкоговорителей
Тип громкоговорителя
Отдача, Па
Треб. W сигнала для громкости 60дБ, мВт
1ГД-5, 1ГД-28, 1ГД-36
Словарь терминов
АНТЕННА (от лат. antenna — мачта, рей), в радио — устройство, предназначенное (обычно в сочетании с радиопередатчиком или радиоприемником) для излучения или (и) приема радиоволн.
ДИОД [от ди. и (электр)од ], 2-электродный электровакуумный, полупроводниковый или газоразрядный прибор с односторонней проводимостью. Применяется в электро- и радиоаппаратуре для выпрямления переменного тока, детектирования, преобразования частоты, переключения электрических цепей.
ЗАЗЕМЛЕНИЕ, устройство для электрического соединения с землей аппаратов, машин, приборов и др.; предназначено для защиты от опасного действия электрического тока, а в ряде случаев для использования земли в качестве проводника тока или одного из плеч несимметрического вибратора (антенны).
КОНДЕНСАТОР электрический, система из двух или более подвижных или неподвижных электродов (обкладок), разделенных диэлектриком (бумагой, слюдой, воздухом и др.). Обладает способностью накапливать электрические заряды. Применяется в радиотехнике, электронике, электротехнике и т. д. в качестве элемента с сосредоточенной электрической емкостью.
ПИРИТ – медный минерал (в основном содержащий дисульфид меди)
СЕЛЕКТИВНОСТЬ (избирательность) радиоприемника, его способность выделять полезный радиосигнал на фоне посторонних электромагнитных колебаний (помех). Параметр, характеризующий эту способность количественно. Наиболее распространена частотная селективность.
ТРАНЗИСТОР (от англ. transfеr — переносить и резистор), полупроводниковый прибор для усиления, генерирования и преобразования электрических колебаний, выполненный на основе монокристаллического полупроводника (преимущественно из кремния или германия), содержащего не менее трех областей с различной — электронной и дырочной — проводимостью.
ТРАНСФОРМАТОР (от лат. transformo — преобразую), устройство для преобразования каких-либо существенных свойств энергии (напр., электрический трансформатор, гидротрансформатор).
Именной указатель
Лосев Олег Владимирович (1903-42), российский радиофизик. Создал (1922) полупроводниковый радиоприемник (кристадин). Открыл ряд явлений в кристаллических полупроводниках («свечение Лосева», фотоэлектрический эффект и др.).
Маркони Гульельмо (1874-1937), итальянский радиотехник и предприниматель. С 1894 в Италии, а с 1896 в Великобритании проводил опыты по практическому использованию электромагнитных волн; в 1897 получил патент на изобретение способа беспроводного телеграфирования. Организовал акционерное общество (1897). Способствовал развитию радио как средства связи. Нобелевская премия (1909, совместно с К. Ф. Брауном).
Поляков Владимир Тимофеевич – известный советский и российский радиотехник, специалист по радиоприемным устройствам
Попов Александр Степанович (4 (16) марта 1859, пос. Турьинские Рудники Верхотурского уезда Пермской губернии, ныне Краснотурьинск Екатеринбургской области – 31 декабря 1905 (13 января 1906), Санкт-Петербург), российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, в том числе для радиосвязи.
Рыбкин Петр Николаевич – ассистент А. С. Попова, первый использовал в радиоприемнике высокоомные телефоны.
Для чего служит диод vd1 — Анс4 — Ans4?
Ans4 — это имя какого-то сайта вопросов и ответов очередного, а не название диода.
А vd1 — это так диод на принципиальной электрической схеме устройства электронного подписывается, где VD означает "диод", а 1 — порядковый номер диода.
Для чего конкретно служит конкретный vd1 — нельзя сказать, не видя конкретной схемы конкретного прибора, но вообще диоды служат для выпрямления переменного тока или для пропускания постоянного только в одном направлении (например, если установить диод в цепь питания — прибору будет нестрашна неправильная установка батареек: диод не позволит прибору выйти из строя, не пропуская неправильно направленный ток.
Что такое диод и как его проверить
Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.
А собранные вместе, они являют собой нечто совершенно уникальное!
Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.
Это как дом, построенный из кирпичей.
Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.
Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.
Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.
Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.
Что такое диод?
Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.
Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).
При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.
Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.
В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).
Когда диод открыт, то на нем падает какое-то напряжение.
Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.
Причем зависимость эта нелинейная.
Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.
Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).
Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.
Мостовая схема выпрямления
В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.
Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.
Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.
В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.
В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.
Схема выпрямления из двух диодов
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.
Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»
Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.
А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.
Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.
Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.
Проверка диодов
Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.
Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.
Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.
Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.
Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).
Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.
Дисплей покажет величину 0,5 – 0,6 В.
Если изменить полярность щупов, диод будет заперт.
Дисплей при этом покажет единицу в крайнем левом разряде.
Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (
переменное напряжение, +, — постоянное напряжение).
Диодный мост можно проверить, установив один щуп на одну из клемм «
», а второй – поочередно на выводы «+» и «-».
При этом один диод будет открыт, а другой закрыт.
Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.
Следует обратить внимание на то, что катод – это плюсовой вывод моста.
Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).
Такой мост, естественно, непригоден для работы.
В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.
При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.
Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.
Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.
Токи потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.
Вследствие этого они будут сильно греться.
Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.
Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.
Диоды Шоттки
Диод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.
Получающийся при этом так называемый потенциальный барьер будет меньше.
В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.
Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.
Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.
В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.
Если в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!
Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?
Ионистор
Сравнительно недавно в широкой продаже появились так называемые ионисторы. По-иному их ещё называют суперконденсаторами. По размерам они сравни обычным электролитическим конденсаторам, но обладают по сравнению с ними, гораздо большей ёмкостью.
Ионистор – это некий гибрид конденсатора и аккумулятора. В зарубежной литературе ионистор называют сокращённо EDLC, что расшифровывается как Electric Double Layer Capacitor, что по-русски означает: конденсатор с двойным электрическим слоем. Работа ионистора основана на электрохимических процессах.
Устройство ионистора.
Отличие ионистора от конденсатора заключается в том, что между его электродами нет специального слоя из диэлектрика. Взамен этого электроды у ионистора сделаны из веществ, обладающими противоположенными типами носителей заряда.
Как известно, электрическая ёмкость конденсатора зависит от площади обкладок: чем она больше, тем больше ёмкость. Поэтому электроды ионисторов чаще всего делают из вспененного углерода или активированного угля. Благодаря этому приёму удаётся получить большую площадь своеобразных «обкладок». Электроды разделяются сепаратором и всё это находятся в электролите. Сепаратор необходим исключительно для защиты электродов от короткого замыкания. Электролит же выполняется на основе растворов кислот и щелочей и является кристаллическим и твёрдым.
Например, с помощью твёрдого кристаллического электролита на основе рубидия, серебра и йода (RbAg4I5) возможно создание ионисторов с низким саморазрядом, большой ёмкостью и выдерживающие низкие температуры. Также возможно изготовление ионисторов на основе электролитов растворов кислот, таких как H2SO4. Такие ионисторы обладают низким внутренним сопротивлением, но и малым рабочим напряжением около 1 В. В последнее время ионисторы на основе электролитов из растворов щелочей и кислот почти не производят, так как такие ионисторы содержат токсичные вещества.
В результате электрохимических реакций небольшое количество электронов отрывается от электродов. При этом электроды приобретают положительный заряд. Отрицательные ионы, которые находятся в электролите, притягиваются электродами, которые заряжены положительно. В итоге всего этого процесса и образуется электрический слой.
Заряд в ионисторе сохраняется на границе раздела электрода из углерода и электролита. Толщина электрического слоя, который образован анионами и катионами, составляет очень малую величину порой равную 1…5 нанометрам (нм). Как известно, с уменьшением расстояния между обкладками ёмкость возрастает.
К основным положительным качествам ионисторов можно отнести:
Малое время заряда и разряда. Благодаря этому ионистор можно быстро зарядить и использовать, тогда, как на заряд аккумуляторных батарей уходит значительное время;
Количество циклов заряд/разряд – более 100000;
Не требуют обслуживания;
Небольшой вес и габариты;
Для заряда не требуется сложных зарядных устройств;
Работает в широком диапазоне температур (-40…+70°C). При температуре больше +70°C ионистор, как правило, разрушается;
Длительный срок службы.
К отрицательным свойствам ионисторов можно отнести всё ещё высокую стоимость, а также довольно малое напряжение на одном элементе ионистора. Номинальное рабочее напряжение ионистора зависит от типа используемого в нём электролита.
Чтобы увеличить рабочее напряжение ионистора их соединяют последовательно, также как и при соединении батареек. Правда, для надёжной работы такого составного ионистора нужно каждый отдельный ионистор шунтировать резистором. Делается это для того, чтобы выровнять напряжение на каждом отдельном ионисторе. Это связано с тем, что параметры отдельных ионисторов отличаются. Ток, который течёт через выравнивающий резистор, должен быть в несколько раз больше тока утечки (саморазряда) ионистора. Значение тока саморазряда у маломощных ионисторов составляет десятки микроампер.
Также стоит помнить, что ионистор – это полярный компонент. Поэтому при подключении его в схему нужно соблюдая полярность.
Кроме этого стоит избегать короткого замыкания выводов ионистора. И хотя ионисторы достаточно устойчивы к короткому замыканию, оно может привести к чрезмерному повышению температуры сверх максимального вследствие теплового действия тока, а это приведёт к порче ионистора.
Ионисторы прекрасно работают в цепях постоянного и пульсирующего тока. Правда, в случае протекания через ионистор пульсирующего тока высокой частоты он может нагреваться из-за высокого внутреннего сопротивления на высоких частотах. Как уже говорилось, увеличение температуры электродов ионистора выше максимально допустимой приводит к его порче.
В документации на ионистор, как правило, указывается значение его внутреннего сопротивления на частоте 1 кГц. Например, для ионистора DB-5R5D105T ёмкостью 1 Фарада внутреннее сопротивление на частоте 1 кГц составлет 30Ω. Также существуют ионисторы с ещё меньшим внутренним сопротивлением. Они маркируются как Low resistance или Low ESR. Такие ионисторы заряжаются быстрее.
Для постоянного тока же внутреннее сопротивление ионистора мало и составляет единицы миллиом – десятки ом.
Обозначение ионистора на схеме.
На схемах ионистор обозначается также как и электролитический конденсатор. Тогда же встаёт вопрос: «А как же определить, что на принципиальной схеме изображён именно ионистор?»
Определить, что на схеме изображён ионистор можно по значению номинальных параметров. Если рядом с обозначением указано, например, 1F * 5,5 V, то тут сразу станет понятно, что это ионистор. Как известно, электролитических конденсаторов ёмкостью 1 Фарада не существует, а если и существует, то габариты у него немалые . Также сразу бросается в глаза номинальное напряжение в 5,5 V. Как уже говорилось, ионисторы в принципе не рассчитаны на большое рабочее напряжение.
Где применяются ионисторы?
Очень часто ионисторы можно встретить в цифровой аппаратуре. Там они выполняют роль автономного или резервного источника питания для микроконтроллеров (IC’s), микросхем памяти (RAM’s), КМОП-микросхем (CMOS’s) или электронных часов (RTC). Благодаря этому даже при отключенном основном питании электронный прибор сохраняет заданные настройки и ход часов. Так, например, в кассетном аудиоплеере Walkman используется миниатюрный ионистор.
При замене аккумуляторов или батареек в плеере он полностью обесточивается, что неизбежно приводит к стиранию настроек (например, частот радиостанций, установок эквалайзера, сброс хода электронных часов). Но этого не происходит благодаря тому, что электронную схему в «ждущем» режиме питает заряженный ионистор. И хотя ёмкость его несоизмеримо меньше, чем ёмкость аккумулятора или батареи этого хватает для сохранения настроек и работы часов в течение нескольких суток!
Ионистор является достаточно новым электронным компонентом. Впервые ионистор был разработан в Соединённых штатах в 1960-х годах. А позднее, в 1978 году, ионисторы появились и в СССР под маркой К58-1. Это был первый отечественный ионистор. Далее промышленность стала выпускать ионисторы марок К58-15 и К58-16.
Как можно применить ионистор в самодельных конструкциях? Его можно использовать в качестве аварийного источника питания, например, в конструкциях на микроконтроллерах. Вот простейшая схема включения ионистора в цепь питания электронного устройства.
Диод VD1 служит для предотвращения разряда ионистора С1, когда напряжение питания равно 0 (Uпит=0). В качестве диода VD1 лучше применить диод Шоттки, например, 1N5817 и аналогичные, так как у них малое падение напряжения на открытом переходе. Резистор R1 препятствует перегрузке источника питания, ограничивая зарядный ток ионистора. Его можно не устанавливать, если источник питания выдерживает ток нагрузки 100 – 250 мА. Rн – это сопротивление нагрузки (питаемое устройство, например, микроконтроллер).
Под занавес сего повествования хочется показать какое-нибудь видео. Видео не моё, нашёл в YouTube. Показано, как можно запитать светодиод от заряженного ионистора ёмкостью в 0,047 Ф. Ионистор на 5,5 V, поэтому если решите повторить эксперимент, то заряжайте его 3 вольтами, иначе можно нечаянно спалить светодиод.
Кстати, у меня оказывается, точно такой же ионистор в запаснике завалялся. А у Вас есть ионистор?