Возведение в степень: правила, примеры
Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.
Понятие возведения в степень
Начнем с формулирования базовых определений.
Возведение в степень — это вычисление значения степени некоторого числа.
То есть слова «вычисление значение степени» и «возведение в степень» означают одно и то же. Так, если в задаче стоит «Возведите число 0 , 5 в пятую степень», это следует понимать как «вычислите значение степени ( 0 , 5 ) 5 .
Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.
Как возвести число в натуральную степень
Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n -ного числа множителей, каждый из которых равен a . Это можно записать так:
Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.
Условие: возведите — 2 в степень 4 .
Решение
Используя определение выше, запишем: ( − 2 ) 4 = ( − 2 ) · ( − 2 ) · ( − 2 ) · ( − 2 ) . Далее нам нужно просто выполнить указанные действия и получить 16 .
Возьмем пример посложнее.
Вычислите значение 3 2 7 2
Решение
Данную запись можно переписать в виде 3 2 7 · 3 2 7 . Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.
Выполним эти действия и получим ответ: 3 2 7 · 3 2 7 = 23 7 · 23 7 = 529 49 = 10 39 49
Если в задаче указана необходимость возводить иррациональные числа в натуральную степень, нам потребуется предварительно округлить их основания до разряда, который позволит нам получить ответ нужной точности. Разберем пример.
Выполните возведение в квадрат числа π .
Решение
Для начала округлим его до сотых. Тогда π 2 ≈ ( 3 , 14 ) 2 = 9 , 8596 . Если же π ≈ 3 . 14159 , то мы получим более точный результат: π 2 ≈ ( 3 , 14159 ) 2 = 9 , 8695877281 .
Отметим, что необходимость высчитывать степени иррациональных чисел на практике возникает сравнительно редко. Мы можем тогда записать ответ в виде самой степени ( ln 6 ) 3 или преобразовать, если это возможно: 5 7 = 125 5 .
Отдельно следует указать, что такое первая степень числа. Тут можно просто запомнить, что любое число, возведенное в первую степень, останется самим собой:
Это понятно из записи .
От основания степени это не зависит.
Так, ( − 9 ) 1 = − 9 , а 7 3 , возведенное в первую степень, останется равно 7 3 .
Как возвести число в целую степень
Для удобства разберем отдельно три случая: если показатель степени — целое положительное число, если это ноль и если это целое отрицательное число.
В первое случае это то же самое, что и возведение в натуральную степень: ведь целые положительные числа принадлежат ко множеству натуральных. О том, как работать с такими степенями, мы уже рассказали выше.
Теперь посмотрим, как правильно возводить в нулевую степень. При основании, которое отличается от нуля, это вычисление всегда дает на выходе 1 . Ранее мы уже поясняли, что 0 -я степень a может быть определена для любого действительного числа, не равного 0 , и a 0 = 1 .
5 0 = 1 , ( — 2 , 56 ) 0 = 1 2 3 0 = 1
0 0 — не определен.
У нас остался только случай степени с целым отрицательным показателем. Мы уже разбирали, что такие степени можно записать в виде дроби 1 a z , где а — любое число, а z — целый отрицательный показатель. Мы видим, что знаменатель этой дроби есть не что иное, как обыкновенная степень с целым положительным показателем, а ее вычислять мы уже научились. Приведем примеры задач.
Возведите 2 в степень — 3 .
Решение
Используя определение выше, запишем: 2 — 3 = 1 2 3
Подсчитаем знаменатель этой дроби и получим 8 : 2 3 = 2 · 2 · 2 = 8 .
Тогда ответ таков: 2 — 3 = 1 2 3 = 1 8
Возведите 1 , 43 в степень — 2 .
Решение
Переформулируем: 1 , 43 — 2 = 1 ( 1 , 43 ) 2
Вычисляем квадрат в знаменателе: 1,43·1,43. Десятичные дроби можно умножить таким способом:
В итоге у нас вышло ( 1 , 43 ) — 2 = 1 ( 1 , 43 ) 2 = 1 2 , 0449 . Этот результат нам осталось записать в виде обыкновенной дроби, для чего необходимо умножить ее на 10 тысяч (см. материал о преобразовании дробей).
Ответ: ( 1 , 43 ) — 2 = 10000 20449
Отдельный случай — возведение числа в минус первую степень. Значение такой степени равно числу, обратному исходному значению основания: a — 1 = 1 a 1 = 1 a .
Пример: 3 − 1 = 1 / 3
9 13 — 1 = 13 9 6 4 — 1 = 1 6 4 .
Как возвести число в дробную степень
Для выполнения такой операции нам потребуется вспомнить базовое определение степени с дробным показателем: a m n = a m n при любом положительном a , целом m и натуральном n .
Таким образом, вычисление дробной степени нужно выполнять в два действия: возведение в целую степень и нахождение корня n -ной степени.
У нас есть равенство a m n = a m n , которое, учитывая свойства корней, обычно применяется для решения задач в виде a m n = a n m . Это значит, что если мы возводим число a в дробную степень m / n , то сначала мы извлекаем корень n -ной степени из а , потом возводим результат в степень с целым показателем m .
Проиллюстрируем на примере.
Вычислите 8 — 2 3 .
Решение
Способ 1. Согласно основному определению, мы можем представить это в виде: 8 — 2 3 = 8 — 2 3
Теперь подсчитаем степень под корнем и извлечем корень третьей степени из результата: 8 — 2 3 = 1 64 3 = 1 3 3 64 3 = 1 3 3 4 3 3 = 1 4
Способ 2. Преобразуем основное равенство: 8 — 2 3 = 8 — 2 3 = 8 3 — 2
После этого извлечем корень 8 3 — 2 = 2 3 3 — 2 = 2 — 2 и результат возведем в квадрат: 2 — 2 = 1 2 2 = 1 4
Видим, что решения идентичны. Можно пользоваться любым понравившимся способом.
Бывают случаи, когда степень имеет показатель, выраженный смешанным числом или десятичной дробью. Для простоты вычислений его лучше заменить обычной дробью и считать, как указано выше.
Возведите 44 , 89 в степень 2 , 5 .
Решение
Преобразуем значение показателя в обыкновенную дробь: 44 , 89 2 , 5 = 44 , 89 5 2 .
А теперь выполняем по порядку все действия, указанные выше: 44 , 89 5 2 = 44 , 89 5 = 44 , 89 5 = 4489 100 5 = 4489 100 5 = 67 2 10 2 5 = 67 10 5 = = 1350125107 100000 = 13 501 , 25107
Ответ: 13 501 , 25107 .
Если в числителе и знаменателе дробного показателя степени стоят большие числа, то вычисление таких степеней с рациональными показателями — довольно сложная работа. Для нее обычно требуется вычислительная техника.
Отдельно остановимся на степени с нулевым основанием и дробным показателем. Выражению вида 0 m n можно придать такой смысл: если m n > 0 , то 0 m n = 0 m n = 0 ; если m n < 0 нуль остается не определен. Таким образом, возведение нуля в дробную положительную степень приводит к нулю: 0 7 12 = 0 , 0 3 2 5 = 0 , 0 0 , 024 = 0 , а в целую отрицательную — значения не имеет: 0 — 4 3 .
Как возвести число в иррациональную степень
Необходимость вычислить значение степени, в показателе которой стоит иррациональное число, возникает не так часто. На практике обычно задача ограничивается вычислением приблизительного значения (до некоторого количества знаков после запятой). Обычно это считают на компьютере из-за сложности таких подсчетов, поэтому подробно останавливаться на этом не будем, укажем лишь основные положения.
Если нам нужно вычислить значение степени a с иррациональным показателем a , то мы берем десятичное приближение показателя и считаем по нему. Результат и будет приближенным ответом. Чем точнее взятое десятичное приближение, тем точнее ответ. Покажем на примере:
Вычислите приближенное значение 2 в степени 1,174367.
Решение
Ограничимся десятичным приближением a n = 1 , 17 . Проведем вычисления с использованием этого числа: 2 1 , 17 ≈ 2 , 250116 . Если же взять, к примеру, приближение a n = 1 , 1743 , то ответ будет чуть точнее: 2 1 , 174367 . . . ≈ 2 1 , 1743 ≈ 2 , 256833 .
Как вычислить большую степень?
Онлайн калькулятор разложения Шенкса (задача дискретного логарифмирования) выдал подобные результаты.
2^(1⋅24) ≡ 265(mod541)
2^(2⋅24) ≡ 436(mod541)
.
Заранее могу сказать, что посчитал он правильно, однако сам способ вычисления я совершенно не понял.
Какие подходы задействованы для вычисления:
а) большой степени
б) откуда взялось деление с остатком?
в) не понял суть знака «тождественно равно» (вики прочитал, но разницы от обычного знака равенства не уяснил)
- Вопрос задан более трёх лет назад
- 5458 просмотров
- Вконтакте
Большую степень не вычисляют в лоб, тем более, что при выполнении действий в модульной арифметике её не нужно хранить целиком, достаточно хранить остаток от деления на известное постоянное число. Знак «тождественное равенство» используется как знак равенства в модульной арифметике, если модуль указан отдельно, поскольку сами числа, естественно, не равны.
Дискретное логарифмирование — формально, задача на пространстве решений, на котором можно применять модульную арифметику над многочленами или числами, с некоторым простым числом в качестве размера множества, частного для деления по модулю и вообще.
Саму степень по модулю можно вычислить довольно простым образом: Вначале раскладываем показатель на двоичные составляющие: 2*24 = 48 = 32+16 = 2^5+2^4. Потом пользуемся двумя тождествами: Первое x^(a+b)=x^a*x^b — произведение степеней одного числа равно степени числа в сумме показателей (забыл точное название). Второе (x*y) mod n = (x mod n)*(y mod n) — неважно, когда брать остаток, в начале или в конце. В итоге возведение числа 2 в большую степень по модулю N выполняется так: в результат заносится 1, в аргумент 2, потом в цикле по разрядам показателя если текущий двоичный разряд показателя 1, результат множится на аргумент и берется остаток по модулю N, который кладется в результат, а аргумент потом умножается на себя и остаток аргумента по модулю N кладется в аргумент.
Итого: аргумент принимает последовательно значения 2, 4, 16, 256, 65536 mod 541 = 75, 75*75 mod 541 = 215, а результат — 1, 1, 1, 1, 75, 75*215 mod 541 = 436.
Как возвести число в натуральную и дробную степень
Решение алгебраических выражений — один из самых распространенных видов задач в высшей математике. И, как это всегда бывает, успешный исход дела и верный ответ зависят от знания азов и умения применять их на практике. Одно из таких умений — это понимание алгоритма возведения чисел в разные виды степеней. Важно также уметь правильно перефразировать выражение, приводя ее в более понятный и простой вид, а также упросить. Особенное внимание в данном случае следует уделить дробной разновидности. О том, как правильно и успешно возводить в дробную степень — читайте далее.
Что означает возведение в степень
Прежде чем привести конкретные примеры, следует объяснить, что называют термином «возведение в степень». Вот подходящее определение. Возведением называют вычисление значения степени какого-либо числa. Поясним сказанное. Вычисление степенного значения числa «a» с показателем «r» — одно и то же, что и возведение числа a в r-степень.
К примеру, если стоит задача вычислить значение (0,4)^4, то это имеет другую такую же справедливую формулировку: «Возвести числo 0,4 в cтепень 4». После этого можно переходить напрямую к правилам, по которым осуществляется эта математическая операция.
Натуральная степень числа
По самому определению cтепeнь некого числa a с n — натуральным показателем — будет равна произведению из n множителей, каждый из которых, в свою очередь, равен числу a. Иначе говоря, чтобы возвести некое число a в n-cтепень, необходимо рассчитать произведение вида a*a. *a, поделенное на n. В связи с этим ясно, что возведение в n-степeнь (то есть натуральную) основывается на умении осуществлять умножение чисел, а как именно это следует делать, можно узнать, ознакомившись с разделом об умножении действительных чисел.
Опишем способы решения на некоторых примерах.
- Пример 1. Задача Требуется выполнить возведение числa минус два в cтепень 4. Решение задачи. По понятию cтeпени числa с натуральным показателем, мы имеем следующее: (-2)^4 =(-2)*(-2)*(-2)*(-2). Все очень просто. Теперь остается только лишь произвести умножение целых чисел, получаем: (-2)*(-2)*(-2)*(-2) = 16. Записываем ответ: (-2)^4 = 16.
- Пример 2. Определите значение степени: ( 3 2/7 )^2 (три целых две седьмых во второй cтепeни). Решение задачи. Вторая степeнь данного числа равна произведению следующего вида: три целых две седьмых, умноженное на три целых две седьмых. Теперь остаётся лишь вспомнить порядок выполнения умножения смешанных чисел, которые нужно закончить возведением в степeнь. Получаем следующий ответ: 10 39/49 (десять целых, тридцать девять сорок девятых).
Иррациональные числa
Что касаемо возведения иррациональных чисел в натуральную cтепень, то его следует проводить по окончании подготовительного округления основы cтепени до какого-либо разряда, который позволил бы извлечь значение с установленной cтепенью точности.
- К примеру, нам следует возвести в квадрат числo пи.
- Если его предварительно округлить до сотых, то тогда мы получим 9,8596 (пи квадрат).
- Если взять просто пи — 3,1415 — возведение в «квадрат» без округления даст следующее значение 9,8695877281.
Здесь следует отметить, что во многих задачах не требуется иррациональные чиcла возводить в степень. Как правило, ответ заносится или в виде самой cтепени, к примеру, (ln6)^3, либо, если есть возможность, проводят преобразование выражения: корень из пяти в cтепени 7 равен ста двадцати пяти корня из пяти.
Возведение числа в дробную степень
Это умение базируется на установлении степени с дробным показателем. Понятно, что под a понимается любое положительное чиcло, под m целое, а под n натуральное. Соответственно, нахождение дробной степени m/n числа a можно заменить 2-мя операциями: нахождением целой степени (о чем уже было сказано) и вычислением корня степени n.
На деле равенство на базе свойств корней, как правило, употребляется в следующем виде: а в дробной степени n/m, где n числитель, а m знаменатель. Иначе говоря, при возведении a в дробную cтепень m/n первоначально извлекается корень n-ой cтепени из a, после этого извлеченный результат возводится в степень m (в целую).
Разберем решение примеров возведения в дробную стeпень.
Пример. Вычислите значение 8 в отрицательную степeнь -2/3
Решение. Продемонстрируем 2 приема решения:
- 1-й прием. Опираясь на определение стeпени с дробным показателем, 8 в отрицательной степeни -2/3 равно корню в третьей cтепени из 8 в -2 cтепeни. Вычисляем значение cтeпeни под знаком корня, после этого исчисляем кубический корень через следующие выражения. Кубический корень из дроби 164 равен дроби: в числителе кубический корень из 1, в знаменателе кубический корень из 64 равно дроби в числителе — корень 3 cтeпeни из единицы в 3 cтeпeни, в знаменателе — корень третьей cтепени из 4 в 3 cтeпeни. Получаем 14.
- 2-й прием. Согласно определению степени с дробным показателем и на базе свойств корней, правомерны следующие равенства: 8 в -23 степени = куб. корню из 8 в -2 cтeпени = куб. корню из 8 в -2 cтeпени. Теперь следует извлечь и возвести в целую cтeпень. Получается, соответственно, 14.
Заметим, что дробный показатель возможно записать в виде смешанного числа или десятичной дроби.
Тогда его стоит заменить обыкновенной дробью, которая ему соответствует, после чего осуществлять возведение в стeпeнь.
В заключение, отдельно остановимся на возведении в 1-ую cтепень. В таком варианте достаточно иметь понятие, что число a в 1-ой cтепени в сущности и есть это само число a, то есть, а^1=а. Это представляет частный случай формулы при n равном 1. К примеру, (-9)^1= -9.
Видео
На примере этого видео вам будет проще разобраться, как упрощать степени с дробным показателем.
Возвести в степень (по модулю) + большие числа
Алгоритм быстрого возведения в степень онлайн с решением по модулю и без модуля. Функциональность поддерживает работу с большими числами.
Использование:
alt=»✔» />Заполняем необходимые данные целыми числами, отвечая на вопросы формы.
alt=»✔» />Жмем кнопку вычислить и получаем результат.
alt=»ℹ» />Галочка «по модулю» позволяет указать модуль, по которому необходимо возводить в степень.
alt=»ℹ» />Галочка «с решением» позволяет получить этапы вычисления: каким образом число возводилось в степень.
Ограничения калькулятора:
Максимальное число, которое можно возвести в степень — 1 000 000.
Максимальная степень, в которую можно возвести — 5000.
Модуль может быть довольно-таки большим, до 100 символов в числе. [1; 10e100)
Алгоритм быстрого возведения в степень (по модулю).
Одним из основных действий арифметики вычетов, возникающих, например, в криптографии, является вычисление а х (mod m), то есть нахождение такого у, что
где a, x, m — натуральные числа. Далее считаем, что a < m. Запись у = b (mod m) означает, что у ≡ b (mod m) и 0 ≤ у < m, т.е, y — наименьший неотрицательный вычет по модулю m, лежащий в том классе, что и b.
Если вычислять «в лоб», т.е. последовательно находить (приводим формулы по модулю):
то нужно выполнить (x — 1) умножение в кольце Zm, Если n — количество разрядов в двоичной записи х, то число умножений не меньше, чем 2 n-1.
Лемма 1: Пусть x, m, a ∈ N. Пусть x = (x0x1 … xn-1)2 т.е.
Определим целые аj по реккурентным формулам
Алгоритм (быстрого возведения в степень). Даны натуральные a, m и x = (xn-1xn-2 … x0)2. Нужно вычислить y = a x (mod m),
1. Вычисляем aj (0 ≤ j ≤ n — 1) по формулам (2),
Лемма 2. Пусть n — число разрядов в двоичной записи x. Тогда, приведенный выше алгоритм требует выполнения не более, чем, 2(n -1) умножений в кольце Zm
Пример 1. Возведем число 2 50 без модуля.
5010 = 1100102 , считаем длину в двоичной записи n = 6. Следовательно, нам надо посчитать a1 … a6 по формулам 2 из теории.
a1 = 2; a2 = 2 2 = 4, a3 = 4 2 = 16, a4 = 16 2 = 256, a5 = 256 2 = 65536, a6 = 65536 2 = 4294967296
x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1, x6 = 1 — двоичная запись в обратном порядке (от младших разрядов к старшим).
Перемножаем ai-ые по второй формуле пункта 2. Другими словами, перемножаем между собой те ai-ые, у которых на соответствующей позиции в двоичной записи степени стоят единицы — это a2, a5 и a6;
2 50 = 4 * 65536 * 4294967296 = 1125899906842624
Пример 2. Возведем число 2 50 по модулю 100. Все аналогично, только считаем ai-ые и произведения ai-ых по модулю 100.
5010 = 1100102 , считаем длину в двоичной записи n = 6. Следовательно, нам надо посчитать a1 … a6 по формулам 2 из теории.
a1 = 2; a2 = 2 2 = 4, a3 = 4 2 = 16, a4 = 16 2 = 56, a5 = 56 2 = 36, a6 = 36 2 = 96 по модулю 100
x1 = 0, x2 = 1, x3 = 0, x4 = 0, x5 = 1, x6 = 1 — двоичная запись в обратном порядке (от младших разрядов к старшим).
Перемножаем ai-ые по второй формуле пункта 2. Другими словами, перемножаем между собой те ai-ые, у которых на соответствующей позиции в двоичной записи степени стоят единицы — это a2, a5 и a6;
2 50 = 4 * 36 * 96 = 24 по модулю 100.
Заметили неточность в работе калькулятора? Убедительная просьба сообщить об этом в комментариях или через форму обратной связи. Заранее Вас благодарим.