Ядро сети что это

Как построена сеть интернет-провайдера

Как построена сеть интернет-провайдера

В прошлой статье мы рассказали про основные шаги по созданию интернет-провайдера, в этой остановимся подробнее на построении сети.

Эталонная модель построения сети

схема эталонной сети

Эталонная модель построения сети

На рисунке приведена эталонная модель построения сети. Она представляет собой топологию «дерево» (объединение нескольких топологий «звезда») с дополнительными избыточными связями. Избыточность компенсирует главный недостаток данной топологии (отказ одного из узлов влияет на работу всей сети), но и увеличивает без того чрезмерный расход кабеля вдвое. Для уменьшения затрат на кабель многие организации «усиливают» только наиболее значимые части сети.

Следует помнить, что это всего лишь модель, а следовательно, деление на уровни может быть условным — некоторые устройства могут реализовывать сразу оба уровня, а какие-то уровни могут вовсе отсутствовать.

Как видно, данная модель состоит из четырех уровней:

  • уровень доступа;
  • уровень агрегации;
  • уровень ядра сети;
  • серверный уровень.

Разберем каждый из них по отдельности.

Уровень доступа

Главным процессом на этом уровне является подключение оборудования клиента (компьютер, Wi-Fi-маршрутизатор) к сети провайдера. Здесь оборудованием провайдера являются коммутаторы (если это локальная сеть и планируется подключение при помощи проводной среды) либо базовые станции (если подключение происходит через беспроводную среду). Как правило, для организации управляемой сети используют коммутаторы второго уровня (L2), реже — третьего (L3). Некоторые провайдеры на этапе строительства локальной сети отдают предпочтение неуправляемым коммутаторам, впоследствии это может сказаться на качестве предоставляемых услуг.

Также для удешевления стоимости подключения используются устройства с максимальным количеством физических интерфейсов 24/48. В роли управляемых коммутаторов второго уровня хорошо зарекомендовали себя Cisco Catalyst серий 2900, 3500 и 3700, но многие операторы выбирают Eltex, SNR и прочие российские разработки, как более доступные по цене.

уровень доступа

Коммутаторы L3 на данном уровне встречаются достаточно редко, так как они дороже, чем L2, и их размещение в технических помещениях многоэтажек связано с определенными рисками. Если коммутаторы L3 и встречаются на уровне доступа, то лишь в объединении уровня доступа и уровня агрегации. Частным примером использования является кабинет в офисе либо отдел, а в случае с провайдером — многоквартирный дом или жилая секция в этом доме.

Стоит отметить, что при строительстве сети каждый провайдер сам выбирает степень ее сегментирования. Сегмент сети, или VLAN (Virtual Local Area Network), позволяет объединить группу пользователей в одну логическую сеть либо обособить каждого по отдельности. Считается очень плохим тоном, когда сеть «плоская», то есть клиенты, коммутаторы, маршрутизаторы и серверы находятся в одном логическом сегменте. Такая сеть имеет очень много недостатков. Более правильным решением является разделение целой сети на более мелкие подсети, в идеальном варианте — выделять VLAN для каждого клиента.

Уровень агрегации

Промежуточный уровень между ядром сети и уровнем доступа. Как правило, этот уровень реализуется на L3-коммутаторах, реже — на маршрутизаторах из-за их высокой стоимости и, опять же, особенностей эксплуатации в помещениях определенного типа. Основная задача оборудования сводится к объединению линков от коммутаторов уровня доступа на «магистральном» коммутаторе по топологии «звезда».

Расстояние от коммутаторов доступа до коммутаторов этой группы может достигать нескольких километров. Если на уровне доступа используются L2-коммутаторы, а сеть сегментирована, то на этом уровне организуются L3-интерфейсы для VLAN, прописанных на уровне доступа. Такой подход способен несколько разгрузить ядро сети, так как в этом случае ядро не имеет записей о самих VLAN и параметрах VLAN-интерфейсов, а имеет только маршрут до конечной подсети.

Наиболее популярное оборудование, используемое провайдерами для реализации работы этого уровня, — Cisco Catalyst серии 3750 и 3550, в частности WS-C3550–24-FX-SMI.

уровень агрегации

Последний получил популярность благодаря наибольшему количеству оптических интерфейсов, но, к сожалению, устарел и не соответствует современным требованиям к строительству сетей. Также достаточно хорошо справляется с задачами этого уровня оборудование фирмы Foundry (ныне Brocade), Nortel (устарел), Extreme, SNR и Eltex. Оборудование, предоставляемое Foundry/Brocade, позволяет использовать шасси и слоты расширения к нему и наращивать производительность по мере необходимости.

Уровень ядра

Ядро является неотъемлемой частью любой сети. Данный уровень реализуется на маршрутизаторах, реже — на высокопроизводительных L3-коммутаторах (опять же, для уменьшения стоимости самой сети.) Как было сказано ранее, в зависимости от архитектуры сети, ядро может «держать» статические маршруты либо иметь настройки для динамической маршрутизации.

Серверный уровень

Реализуется, как понятно из названия, серверами сети. Реализация может быть как на серверных платформах, так и на специализированном оборудовании. ПО для серверных платформ на сегодняшний день представлено разными производителями и под разными видами лицензий, равно как и ОС, на которых будет работать это программное обеспечение. Стандартный набор провайдера на этом уровне:

Иерархическая модель сети Cisco

Судя по комментариям к предыдущему посту о встроенном в CISCO рефлектометре для кабельных линий, я понял, что надо разьяснить то каким образом организуется сеть на корпоративном уровне. И почему отказоустойчивость в корпоративном секторе выше чем в SOHO, к которому привыкло большинство администраторов работающих с неуправляемым оборудованием. И так, посмотрим на картинку от компании Cisco.

Иерархическая модель сети Cisco.

Cisco Network

Инженеры Cisco разработали трёхуровневую систему иерархическую модель сети для корпоративного сектора. Она логична и за счёт аппаратной избыточности даёт высокую степень надёжности. Как видно из картинки схема представлена тремя уровнями.

  • Ядро сети (Core layer)
  • Уровень распределения (Distribution layer)
  • Уровень доступа (Access layer)

Ядро сети (Core layer)

Самый верх иерархии представлен высокоскоростными и высокопроизводительными оммутаторами. Обычно они снабжаются портами со скоростью 100 Гбит/сек и/или 40 Гбит/сек. Эти коммутаторы оснащены ререзвируемыми блоками питания с горячей заменой. Основная цель этого слоя в том, чтобы максимально быстро передавать пакеты между подсетями. Значит коммутатор должен быть не ниже Layer 3. И вторая основная цель состоит в резервировании каналов. Значит необходима поддержка технологии EtherChannel.

У компании Cisco есть линейка коммутаторов под эти задачи. Это серия коммутаторов Nexus от 2000 до 9000. Они отлично подходят для подобной задачи. Но есть и более дешёвые варианты, например, Cisco Catalyst 6500.

Уровень распределения (Distribution layer)

Следующий уровень — это уровень распределения. Он обслуживает общую связность между уровнем доступа и ядром сети. Иногда этот уровень называют уровнем агрегации, но такое название я встречал лишь при обсуждении оборудования компании D-Link. Коммутаторы уровня распределения призваны снять нагрузку с ядра сети распределяя траффик между коммутаторами доступа. Так же на их плечи ложится обработка огромного количества MAC-адресов и VLAN. Одно из требований — это наличие высокоскоростных аплинков до коммутаторов уровня ядра. Каждый коммутатор уровня распределения должен быть подключен минимум к двум коммутаторам ядра. В этом случае при поломке одного из коммутаторов ядра работоспособность сети не нарушится. Даунлинки должны быть высокоскоростными, дабы не создавать эффекта бутылочного горлышка. При аплинках со скоростью от 40 Гбит/сек до 10 Гбит/сек, даунлинки должны быть от 10 Гбит/сек до 1 Гбит/сек.

В маленьких компаниях коммутаторы ядра и коммутаторы распределения — это одни и те же коммутаторы. Но я бы не стал говорить, что это правильный подход для компании где требуется аппаратное резервирование сети и где требуется гарантированное подключение позволяющее на горячую заменять коммутационное оборудование.

На коммутаторах уровня распределения так же требуется поддержка EtherChannel и в добавок они должны иметь корректно настроенную QoS.

Уровень доступа (Access layer)

Это наиболее простые коммутаторы из арсенала трёхуровневой схемы сети. Но как бы не хотели экономные администраторы, в это место нельзя впихнуть неуправляемые коммутаторы без поддержки агрегации и транков. Каждый коммутатор уровня доступа должен быть подключен к двум и более коммутаторам уровня распределения. В таком случае при выходе из строя одного из коммутаторов уровня распределения сеть останется в рабочем состоянии. Эти коммутаторы должны быть подключены к уровню распределения на скоростях от 10 Гбит/сек до 1 Гбит/сек. Со стороны клиентов эти коммутаторы будут обеспечивать подключение на скоростях 10/100/1000 Мбит/сек.

В зависимости от конкретных потребностей, коммутаторы доступа могут быть совершенно разными. Так, например, они могут поддерживать VLAN, PoE, Layer2, Layer3, STP и агрегации.

Клиентские компьютеры к таким коммутаторам подключаются одним кабелем, по этому резервирование каналов невозможно. Серверное же оборудование можно подключать несколькими каналами в режиме агрегирования. В зданиях высокого класса обслуживания производится как вертикальная, так и горизонтальная связность коммутационных. Таким образом, даже при частичном разрушении здания или пожаре, аппаратное дублирование каналов позволяет продолжать обслуживание сетевой инфраструктуры.

Послесловие

Надеюсь, теперь понятно почему большие корпоративные сети так сложно обслуживать и почему администраторы из корпоративного сектора крайне косо смотрят на использование неуправляемых коммутаторов на предприятиях любого уровня.

В качестве примера пользы подобного многократного дублирования могу привести пожар на одном из наших объектов. На том обьекте было дублирование как сети, так и серверов хранения данных. Так вот во время пожара у нас были видеоматериалы того как произошло возгорание, как распространялся огонь по зданию, а так же температура при которой начинали отключаться сервера в серверных.

12 комментариев

Имя: Алексей 🖉
Спасибо, многое стало понятнее.

В нашей «эмбеддед»-песочнице, конечно, такого уровня резервирования нет. Как и почти нет готовых решений и оборудования для мониторинга и обеспечения связности. Наоборот, пытаемся оптимизировать вес и количество нод. Поэтому, большое внимание механизму диагностики. Все ноды либо регулярно прозваниваются сервером, либо сами шлют «life-sign». Особо важные компоненты также мониторятся на уровне железа специальным чипом-«сторожевым псом». Используется опыт управления традиционными CAN, но уже с использованием наработанных технологий LAN и прочих интернетов. Ну и физический уровень совсем другой. Стандартная «медь» Ethernet не подходит.

Имя: Orcinus Orca 🖉
Алексей, ну так и в локалках на скоростях 40-100 гбит/сек меди тоже нету.

А учитывая, что на каждом этаже где находятся арендаторы мы ставим VoIP-шлюзы, то медь можно «вырубать» на всей вертикали коммутации.

Имя: Orcinus Orca 🖉
Алексей, опять же, в ВОЛС используются как GOF, так и POF кабели, стоимость у них одинаковая. Трансмиттеры как лазерные (это если 20 километров надо пробить), так и светодиодные (если недалеко и очень дёшево). Волокно как многомодовое (если до 500 метров), так и одномодовое (если дистанция в километрах). Бронированное (если надо под землю) или вообще без оболочки (на пигтейлы идут). Разного диаметра, вибро и ударопрочные. Япония и Китай выпускают оптику на все вкусы и пожелания. Даже у РФ есть оптоволоконные кабели, но они почему-то овального сечения нам достались и мы от него отказались. Длинна волны сильно зависит от используемой скорости передачи. Чем выше скорость тем сложнее приёмопередатчики.

Да и статья совсем не об этом.

Имя: Алексей 🖉
Я про возможное использование стекловолокна для автотелекома читал только в литературе ещё лет 20 назад. Тогда его забраковали по упомянутым причинам и начали использовать пластик. Во всяком случае, мне неизвестен ни один отраслевой стандарт, который использовал бы стекловолокно. Либо медь, либо оптический пластик применяются. Из-за специфики как раз. Нужно чтобы было лёгким, надёжным, дешёвым, простым в обслуживании. Мегабиты в секунду только сейчас понадобились, километровую линию пробивать не надо, достаточно десятков метров. Ну и это должна быть зрелая стандартная технология с альтернативными поставщиками.

Этот сайт использует файлы cookies, чтобы упростить вашу навигацию по сайту, предлагать только интересную информацию и упростить заполнение форм. Я предполагаю, что, если вы продолжаете использовать мой сайт, то вы согласны с использованием мной файлов cookies. Вы в любое время можете удалить и/или запретить их использование изменив настройки своего интернет-браузера.

Коммутаторы ядра сети — что это такое, для чего нужны и как выглядят

О периферийных устройствах написано достаточно много. Это и понятно, потому что большое число задач требует разнообразный парк оборудования: точки доступа, коммутаторы уровня доступа, межсетевые экраны и так далее.

В случае с корпоративной ИТ инфраструктурой все эти компоненты работают на «нижних этажах», обеспечивая доступ пользователей и конечных устройств к сети.

А вот про уровень ядра сети сказано довольно мало. Причина вполне понятна — больших организаций меньше, чем маленьких, поэтому крупных корпоративных сетей также меньше. Попытаемся восполнить этот пробел. Для начала расскажем об общих чертах и потом перейдём к конкретным моделям (описанию и вариантам использования). Помимо общих принципов, разберём конкретные модели по винтикам, (в том числе и буквально — отверткой), чтобы посмотреть, что и как устроено.

Попробуем расколоть этот орешек знаний, чтобы добраться до ядра.

Вступление

Как мы уже писали ранее в статье «Коммутаторы L2, L2+ и L3 — что, когда, куда, откуда, как, зачем и почему?» — корпоративную сеть можно условно разделить на три уровня:

  • Уровень доступа — предназначен для подключения клиентских устройств.
  • Уровень агрегации/распределения, который, как следует из названия, является промежуточным и служит для предварительного управление трафиком.
  • Уровень ядра сети.


Рисунок 1. Уровни корпоративной сети

Коммутаторы ядра находятся в самом центре корпоративной сети и обеспечивают общую коммутацию (а если необходимо, то и маршрутизацию), связывающие все остальные сегменты.

Разумеется, нельзя каждый уровень рассматривать отдельно от предыдущего.

Общее увеличение трафика на уровне доступа ведёт к дополнительной нагрузке на коммутаторы уровня распределения, что в итоге влияет на загрузку ядра. Разумеется, возможны ситуации, когда всплеск трафика происходит локально в рамках одного сегмента (в переделах одного коммутатора уровня агрегации или даже уровня доступа). Но если имеется общая тенденция к росту трафика и передаваемых объёмов, это всё равно приводит к повышению нагрузки на ядро сети.

Поэтому важно учитывать не только сиюминутные потребности, но и что ждёт в будущем.

Особенности нагрузки в ядре сильно отличаются от нагрузки на уровне доступа. Если коммутатор уровня доступа привязан к работе пользователей (которых может попросту не быть в офисе), то на коммутаторе ядра будет присутствовать трафик обмена данными между серверами, СХД, облачными системами для резервного копирования и т.д. Поэтому коммутаторы ядра необязательно самые быстрые, но уж точно самые надёжные, рассчитанные на долговременную загрузку

Важный нюанс — уровень ядра наиболее критичен к простоям при выполнении технических работ. Выключение и замена одного коммутаторов уровня ядра приводит к бездействию большого числа участников сетевого обмена. Поэтому желание сократить число и продолжительность таких «остановок» вполне объяснимо. Для этого необходимо: во-первых, выбрать оптимальную архитектуру будущей сети, во-вторых, подобрать наиболее подходящие коммутаторы ядра.

Особенности коммутаторов ядра

Как уже было сказано выше, в ИТ инфраструктуре корпоративной сети коммутаторы уровня ядра являются центральным звеном, который объединяет другие сегменты (обычно уровня агрегации/распределения, реже — уровня доступа). Через ядро проходит большая часть от всего трафика между клиентами, серверами, Интернет и так далее.

Поэтому главное «умение» ядра сети — не падать при максимальной загрузке. Этот уровень всегда состоит из высокоскоростных коммутаторов и маршрутизаторов, производительных и отказоустойчивых. Немаловажную роль играет «железо», в том числе характеристики коммутирующей матрицы, производительность процессора или контроллер.

А теперь кратко, просто и понятными словами

Проще говоря, коммутаторы уровня ядра — это очень надёжные производительные коммутаторы L3 или L2+, которые могут выполнять те или иные задачи, но главное — устойчивая передача трафика. Ниже мы подробно остановимся на некоторых нюансах.

Производительность

Как уже было сказано выше, скорость пересылки пакетов и ёмкость коммутации — важные характеристики для коммутатора ядра в корпоративных сетях. Ядро должно обеспечивать требуемую скорость и пропускную способность.

Хорошая новость — трафик не берётся из ниоткуда. То есть, зная кого, чего и сколько вы собираетесь подключить к сети и какой «толщины» будут внешние каналы, можно спрогнозировать верхнюю и нижнюю цифры по загрузке ядра сети. А дальше уже дело за выбором оборудования.

Разумеется, корпоративная жизнь порой подбрасывает сюрпризы вроде рождения новых бизнес-подразделений «с нуля» или построения новых сегментов вроде приватных облаков. Поэтому резервировать от 20 до 35% запаса производительности «на вырост» и такой же резерв по количеству портов для ядра сети — это совсем неплохая идея. Как было сказано выше, обосновать остановку или временное замедление в работе практический всей корпоративной сети, чтобы заменить коммутатор в ядре — та ещё задачка.

Надёжность оборудования

При проектировании ядра уделяют больше внимания избыточности по сравнению с другими уровнями. Вроде всё понятно: зачем и почему, но давайте посмотрим более детально.

Как было сказано выше, нагрузка на коммутаторы уровня ядра имеет другой характер, нежели уровня доступа. Соответственно, температурное воздействие тоже выше, и самое главное — держится на одной отметке. И это должно учитываться при проектировании системы охлаждения.

Ещё один важный нюанс — электропитание. Наличие двух источников питания — не роскошь, а необходимость. Разумеется, можно использовать дополнительные «хитрые» внешние модули АВР (Автоматический Ввод Резерва) или SmartPDU, которые позволяют переключить подачу энергии на резервную линию, даже если на самом устройстве один блок питания. Но что будет с ядром сети, если единственный блок питания внутри коммутатора выйдет из строя? Нужно ли это проверять?

При наличии второго блока питания, когда один из них выходит из строя, другой немедленно берёт на себя все функции по обеспечению энергоснабжения. То есть стандартная схема: Active-Passive вполне пригодится.

Многое зависит от производителя блока питания и элементной базы. Если внутри всё сделано непонятно из чего и непонятно как — наверное, вообще не стоит устанавливать подобное оборудование, а уж в ядро сети — тем более.

Устойчивость к атакам и пиковым нагрузкам

Поскольку коммутаторы ядра являются центром сети, они должны уметь не только быстро перебрасывать Ethernet кадры, но и обладать расширенной защитой от DDoS с использованием протоколов уровня 2 и 3. И дело тут не только в «злобных хакерах». Криво работающее сетевое приложение может «навести шороху» не меньше, нежели «тёмные рыцари клавиатуры».

Кроме защиты от атак, сама по себе возможность работы при пиковых нагрузках является важной характеристикой. Обычно советуют избегать таких конфигураций, как дотошные списки доступа и фильтрация пакетов, особенно на фоне деградации производительности. Но в любом случае запас по мощности не повредит.

Стек и масштабирование. Агрегирование каналов.

Разумеется, ситуация, когда из-за проблемы с центральным коммутатором не работает крупный сегмент, а то и вся корпоративная сеть — мало кого устраивает. Чтобы избежать ситуаций, когда одно-единственное устройство объединяет большое число подключений и в случае выхода из строя ничто не может взять на себя его функции — используют резервирование и объединяют сетевое оборудование в стек.

Стек — это соединение нескольких физических коммутаторов в один «супер-коммутатор», когда при выходе одного из физических устройств отказоустойчивая схема продолжает работать.

Однако на одной только отказоустойчивости свет клином не сошёлся. Рано или поздно сеть разрастётся и возникнет дефицит вычислительных ресурсов и свободных портов. Даже если вначале были закуплены коммутаторы с хорошим запасом по портам и мощности, всё равно рано или поздно придётся проводить модернизацию. Стек коммутаторов даёт нам возможность добавить в ядро новые устройства, не снимая с эксплуатации старые.

Например, серия XGS4600 поддерживает стек до 4 коммутаторов, а XGS3700 — до 8. Проще говоря, если у вас в ядре присутствует, допустим два коммутатора XGS4600-52F, вы можете удвоить их количество, доведя их число до 4, не прерывая работу сети.

Также полезным выглядит использование отказоустойчивых протоколов, например, VRRP для построения отказоустойчивой схемы маршрутизации.

Крайне важно, чтобы остальные участники сетевого обмена не теряли связь с ядром. Для этого используется агрегирование каналов, когда несколько физических портов на коммутаторе уровня агрегации/распределения объединяются в общий UPLink и подключаются к двум портам на коммутаторах уровня ядра. Таким образом при обрыве подключения на одном из портов, связь всё равно не теряется.

«Quality of Service» (QoS) — является важной функцией, позволяющей обеспечить стабильное прохождение определённых типов трафика. Например, на современных предприятиях требуется видеоконференцсвязь. Такой трафик требует непрерывной передачи голоса и видеоданных, в отличие, например, от просмотра текстовых страниц в формате html. Ещё один пример — резервное копирование, когда данные идут плотным потоком и необходимо успеть всё передать за короткое «окно бэкапа». В таких случаях выручает использование системы приоритетов и ограничение полосы пропускания. То есть — QoS.

Благодаря QoS коммутаторы ядра получают возможность предоставлять разную полосу пропускания различным приложениям в соответствии с характеристиками. По сравнению с трафиком, который не так требователен к полосе пропускания и задержкам во времени (например, электронная почта), критический трафик получит более высокий приоритет, и будет передаваться с высокой скоростью и гарантированно низкой потерей пакетов.

Управление

Для описания основных принципов работы с коммутаторами ядра сети очень даже подходит известная пословица: «Работает? Не трогай!».

Но бывают ситуации, когда трогать нужно, например, при модернизации всей сети, подключения дополнительных сегментов и так далее.

И, разумеется, необходимо вовремя получать данные о работе сетевого оборудования.

Поэтому коммутаторы ядра сети поддерживают различные методы контроля и управления, начиная от SNMP и заканчивая подключением консоли.

Также полезно иметь выделенный порт управления (не объединяемый с передачей данных), который можно подключить в отдельный VLAN или даже коммутатор. Помимо повышения уровня безопасности, это позволяет упорядочить архитектуру сети и сохранить возможность управления даже при резком возрастании трафика через ядро.

Рассмотрим на конкретных моделях

В качестве примера мы выбрали линейку коммутаторов, предназначенных для уровней ядра и агрегации/распределении. Откуда такое двойное назначение? Всё зависит от целей и задач, в первую очередь от архитектуры корпоративной сети. Бывают ситуации, когда на коммутаторы уровня агрегации/распределения ложится нагрузка, сопоставимая с уровнем ядра сети. Например, если активно используется маршрутизация между VLAN, списки доступа (ACL), фильтрация трафика и так далее.

Запас мощности и широкий набор возможностей в любом случае не помешает.

О каких моделях речь?

На сегодняшний день линейка XGS4600 насчитывает 3 коммутатора: XGS4600-32, XGS4600-32F, XGS4600-52F. Основное различие между ними — в количестве и конструкции портов. Ниже приводится таблица, в которой указаны основные различия и общие моменты.

Характеристика XGS4600–32 XGS4600–32F XGS4600–52F
Общее число портов 32 32 52
Gigabit SFP 24 48
100/1000 Mbps 24
Gigabit combo (SFP/RJ‑45) 4 4
10-Gigabit SFP+ 4 4 4
Производительность коммутации (Gbps) 136 136 176
Скорость пересылки пакетов (Mpps) 101.1 101.1 130.9
Буфер пакетов (байт) 4 Мбайт 4 Мбайт 4 Мбайт
Таблица MAC-адресов 32 Кбайт 32 Кбайт 32 Кбайт
Таблица пересылки L3 Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6 Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6 Макс. 8 тыс. записей IPv4; Макс. 4 тыс. записей IPv6
Таблица маршрутизации 12 тыс. 12 тыс. 12 тыс.
Число IP интерфейсов 256 256 256
Flash/RAM 64 Мб / 1 Гб 64 Мб / 1 Гб 64 Мб / 1 Гб

Ниже мы кратко опишем, почему эти коммутаторы пригодны для использования в качестве ядра сети.

Стек и High Availability

С помощью одного или двух слотов 10-Gigabit SFP+ можно объединить в физический стек до 4 коммутаторов. Также поддерживается динамическая маршрутизация для упрощения обмена данными между подсетями. Эта функция очень удобна для больших отелей, университетов и других компаний, где используется сложная сетевая инфраструктура. Для коммутаторов серии XGS4600 можно приобрести дополнительную лицензию с поддержкой протоколов OSPFv3 и RIPng для динамической маршрутизации IPv6.

XGS4600 Series оборудован гигабитными портами и четырьмя интегрированными слотами 10-Gigabit SFP+.

Другие меры обеспечения надёжности

Помимо объединения в стек, коммутаторы серии хранят два файла конфигурации и два образа микропрограммы. Это своего рода защита от случайных сбоев. Представьте, что закачанный файл микропрограммы оказался повреждён при передаче по сети. Наличие второго файла позволяет решить эту проблему «без лишней крови», просто перезагрузив устройство с рабочей прошивкой.

Примерно такой же алгоритм восстановления, если изменения конфигурации оказались «несовместимы с жизнью». Просто подгружаем другой файл — и «дело в шляпе».

Схема питания — два независимых блока

XGS4600 Series поддерживает резервирование питания по схеме Active-Standby. В случае выхода из строя основного источника питания коммутатор будет работать от резервного источника питания.

Сами блоки питания — от известного производителя DELTA Electronics.

А что с «железом»?

  • Центральным узлом является процессор (CPU) — 1GHz ARM cortex-A9.
  • Switch controller — BCM56340.
  • RAM— 1GB.
  • Flash 64MB.

Разумеется, лучше один раз увидеть, чем сто раз услышать (а ещё лучше пощупать своими руками). И мы прямо в офисе вскрыли две модели чтобы посмотреть, что внутри.

Ниже прилагаем несколько фотоснимков, сделанных прямо в офисе Zyxel Россия.


Рисунок 2. Коммутаторы серии XGS4600, вид спереди: вверху — XGS4600-32F, снизу XGS4600-32


Рисунок 3. Коммутаторы серии XGS4600, вид сзади: вверху — XGS4600-32F, снизу XGS4600-32.

Во всех моделях, предназначенных для ядра — два блока питания.


Рисунок 4. Внутреннее устройство коммутатора XGS4600-32.

Правильная компоновка и аккуратный монтаж плат и разъёмов очень важны. У производителя не должно возникать желания «впихать невпихуемое» в небольшой корпус.

Присутствуют мощные радиаторы и блок из трёх вентиляторов. Для коммутаторов ядра сети важно иметь хорошее охлаждение.


Рисунок 5. Коммутатор XGS4600-32 — блоки питания.


Рисунок 6. Коммутатор XGS4600-32. Фрагмент материнской платы с микросхемами памяти.


Рисунок 7. Крупным планом.


Рисунок 8. Внутреннее устройство коммутатора XGS4600-32F.


Рисунок 9. Блок питания коммутатора XGS4600-32F.


Рисунок 10. В правой части расположены UPLINK, порт MGMT для управления коммутатором и консольный порт.

Обратите внимание на выделенный порт управления (OOB) — на панели он показан как MGMT. В отличие от консольного RS-232 (который тоже в наличии) данный порт предназначен для удалённого управления устройством по сети.

Также присутствует индикатор номера коммутатора в стеке — Stack ID.

Различные функции

Как уже было сказано выше, несмотря на то, что основная задача ядра — стабильная работа под нагрузкой, время от времени возникает необходимость управлять трафиком, и это требует определённых инструментов.

Например, поддержка VLAN, а также QoS и списки доступа — довольно полезные функции.

Полный список функций можно посмотреть здесь.

Подведение итогов и рекомендации

Невозможно объять необъятное, поэтому наш рассказ про коммутаторы ядра подходит к концу.

Существует множество факторов, которые определяют, какие коммутаторы ядра наиболее подходят для ядра сети в каждом конкретном случае. Однако существуют некоторые общие рекомендации, которые желательно соблюдать, чтобы избежать длительных простоев сетевой инфраструктуры.

Помимо «голой теории» мы показали, как эти особенности выглядят на примере конкретной реализации. Описанные принципы подходят при оценке любых других коммутаторов уровня ядра сети. Надеемся, это поможет при разработке новых проектов и модернизации уже существующих.

Коммутаторы уровня доступа, распределения, ядра

Коммутаторы уровня доступа, распределения, ядра

Сетевое оборудование структурировано по модели OSI, которая включает 7 уровней. Более подробно об этом мы говорили в соответствующем материале. Однако чаще остальных в большинстве инструкций упоминают следующие уровни:

  • доступ;
  • агрегация;
  • сетевое ядро.

О том, что это значит, мы поговорим в этой статье.

  1. Что такое «уровни управления коммутаторов»?
  2. Коммутаторы уровня ядра
  3. Коммутаторы уровня распределения (агрегации)
  4. Access-коммутаторы (уровня доступа)
  5. Как определить подходящее устройство

Коммутаторы уровня доступа, распределения, ядра

Что такое «уровни управления коммутаторов»?

Трехуровневая модель сети впервые была предложена инженерами компании Cisco. Смысл этой модели состоит в том, чтобы объединить все устройства в архитектуре сети в группы по древовидному принципу. Если представить, что уровни доступа — это дерево (возможно, это звучит забавно, но древовидная структура почитается всеми сетевыми специалистами), то:

  • ядро сети — ствол;
  • распределители, агрегаторы — крупные ветви;
  • коммутаторы уровня доступа — мелкие и тонки ветки в большом количестве;
  • пользователи — листва.

Так легче ориентироваться в уровнях, подуровнях и прочих хитросплетениях сетевого администрирования.

Такая иерархия в больших и сложных сетях позволяет распределять устройства по отдельным кластерам, согласно их функциям и техническим возможностям, а также упрощает контроль их работы. Трафик при этом передается от нижестоящего узла на вышестоящий, маршрутизируется и направляется по конечному адресу. По сути такая система служит огромным приемно-сортировочным пунктом, который вначале стремится к централизации данных, а затем рассылает пакеты по запрашиваемым портам-адресатам.

Коммутаторы уровня ядра

Основная задача такого оборудования — обеспечить быструю и безотказную транспортировку огромного объема трафика. Само собой, без задержек. Также предварительно надо озаботиться настройкой ACL и маршрутизации в целом, иначе поток сильно замедлится.

Зачастую при проблемах с пиковой производительностью приходится сжимать зубы и полностью менять сетевую инфраструктуру на более мощную. Классическим расширением тут не отделаешься, поскольку 8 портов по 100 Мбит + 8 портов по 100 Мбит будут на голову хуже 4 портов по 1 Гбит. И не забывайте про резервное кольцо на всякий случай.

Сетевые устройства уровня ядра зачастую работают по принципу VLAN на один узел Distribution-уровня. А это еще кто такие? А вот сейчас познакомим.

Коммутаторы уровня распределения (агрегации)

Говоря простым языком — распределители трафика между VLAN-сетями с последующей фильтрацией по ACL-протоколу. Такие устройства ориентированы на описание политики сети для конечного потребителя. Они же формируют широковещательные потоки Broadcast и Multicast-доменов и рассылок. Ваше IPTV — их рук дело.

Здесь периодически используют статические маршруты на базе динамических протоколов. Нередко можно встретить устройства распределения трафика с внушительной емкостью SFP-портов, которые одновременно являются и портами расширения (дополнительные устройства, объединение в кластер), и инструментом для использования связей с коммутаторами уровнем ниже. С их же помощью определенное число узлов объединяют в кольцо.

А еще подобные коммутаторы нередко встречаются с функционалом L2+ (L3 Lite) и принципом калибровки «VLAN каждого сервиса соответствует одному узлу Access».

Как вы понимаете, мы подобрались к третьей категории устройств

Access-коммутаторы (уровня доступа)

Эти устройства созданы для того, чтобы к ним подключались сами пользователи. Вы наверняка встречали маркировку DSCP, но не знали, что она значит. Все просто: трафик, маркированный меткой DSCP, приходит как раз от абонентов, чтобы его было легче отслеживать.

Зачастую это классические коммутаторы L2 (реже — L3) с классическим принципом настройки:

  1. VLAN-услуги идут на порт абонента;
  2. Один управляющий VLAN отвечает за доступ.

Как определить подходящее устройство

Вы уже поняли, что корпоративная сеть делится на три уровня. Преимущества такого подхода — оптимизация расходов, грамотный выбор оборудования L2 и L3 (иногда L2+). Если стоит выбор между уровнями, спросите себя, где оно будет стоять. Если компания небольшая, то выбор L2 очевиден.

Большая сеть по умолчанию должна быть надежной, так что здесь использование коммутаторов L3 — вопрос надежности. При этом устройство должно поддерживать VLAN, ACL и QoS.

Коммутаторы ядра по умолчанию бывают третьего уровня, при этом зачастую комплектуются жирными пропускными Ethernet-каналами:

  • 10 Гбит/с;
  • 40 Гбит/с;
  • 100 Гбит/с.

Они не гоняют пакеты. Скорее выполняют роль меж-виртуальной маршрутизации:

  • распределение трафика;
  • скорость пересылки;
  • списки доступа и распределение устройств.

Иными словами — делают все для максимальной скорости передачи под предельными нагрузками. Нередко на «ядерные» коммутаторы ложится и защита от DDoS с использованием протоколов третьего уровня. А потому такие устройства должны быть максимально отказоустойчивыми.

Закончить хотелось бы простой идеей: идеальных устройств коммутации не существует. Особенно, если вы плотно столкнулись с коммерческими структурами, где уровни доступа, пропускной способности, производительности оборудования рассчитываются чуть ли не для каждого сотрудника, не говоря уже о различных отделах. Изучите подробнее уровни и защитные функции коммутаторов, чтобы сделать правильный выбор. , либо закажите консультацию специалистов, которые ответят на все ваши вопросы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *