Что такое много силовой многоугольник

Зависимость между моментами силы относительно точки и оси , проходящей через эту точку

Связяминазываются любые ограничения, препятствующие перемещению тела в пространстве.
Тело, стремясь под действием приложенных сил осуществить переме-щение, которому препятствует связь, будет действовать на нее с некоторой силой, называемой силой давления на связь. По закону о равенстве действия и противодействия, связь будет действовать на тело с такой же по модулю, но противоположно направленной силой.
Сила, с которой данная связь действует на тело, препятствуя тем или иным перемещениям, называется силой реакции (реакцией) связи.
Одним из основных положений механики является принцип освобождаемости от связей: всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями связей. Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу. Основные виды связей и их реакции приведены в таблице 1.1.

Силовой многоугольник . Геометрическое условие равновесия системы сходящихся сил

Силовым многоугольником системы сходящихся сил называют многоугольник, построенный на ее векторах (силах). Построение многоугольника можно осуществить в произвольном порядке так, чтобы конец одного вектора являлся началом другого, переносимого параллельно его линии действия.

Вектор , замыкающий силовой многоугольник, начало и конец которого совпадают соответственно с началом первого и концом последнего векторов системы, является геометрической суммой этой системы сил.

Аналитические условия равновесия системы сил

Теорема о равновесии 3-х непараллельных сил лежащих в одной плоскости

Понятие момента силы

Векторный момент силы относительно точки

Алгебраический момент силы относительно точки

Понятие момента силы относительно оси

Зависимость между моментами силы относительно точки и оси , проходящей через эту точку

Если к абсолютно твердому телу приложена произвольная пространственная система сил, то изучение ее действия на это тело, в отличие от системы сходящихся сил, требует введения новых понятий. В частности, определения моментов силы относительно точки (центра) и оси.

Теперь введем понятие момента силы сформулировав его следующим образом: моментом силы относительно какой-либо точки называется вектор, численно равный произведению модуля силы на плечо и направленный перпендикулярно к плоскости содержащей силу и выбранную точку, таким образом, чтобы с конца этого вектора можно было бы видеть стремление силы вращать тело против движения часовой стрелки.

Так как существуют правая и левая системы координат, то следует конкретно выбрать одну из них, чтобы единым образом определить направление векторного момента силы относительно точки. В дальнейшем будем пользоваться только первой системой координат. Это позволяет применить "правило буравчика", хорошо известное читателям еще со школьной скамьи.

Итак пусть даны сила , приложенная в точке А какого-либо абсолютно твердого тела, и некоторый центр О (рис.2.11). Тогда моментом силы относительно точки О называется вектор, приложенный к центру (или точке) О, направленный перпендикулярно к плоскости треугольника ОАВ в ту сторону, откуда поворот тела, совершаемый силой, виден против хода стрелки часов (по правилу буравчика) и численно равный удвоенный площади треугольника ОАВ, иначе, этот вектор можно представить как векторное произведение радиуса-вектора (т.е вектор, направленный от моментной точки О, к точке А приложения силы и модуль которого равен длине между этими точками) на силу, т.е.

Здесь для вектора момента силы введено обозначение , где в индексе указывается точка, относительно которой берется момент, а внутри скобки сила, действующая на тело и сверху символа проводится прямая, означающая, что эта

величина является векторной. Кроме этого обозначения в существующих литературах по теоретической механике применяются и такие обозначения , .

Теперь докажем, что модуль вектора , представленного формулой (2.11) равен произведению величины силы на плечо, а направление векторного произведения двух векторов и , т.е. х точно совпадает с направлением вектора .

Как известно из векторной алгебры, модуль векторного произведения равен площади параллелограмма, построенного на векторах сомножителях и , т.е.

Однако из прямоугольного треугольника KOA, где OK=h, имеем rsin( )=h. Следовательно, rFsin( )=F×h=m0( ). Это выражение дает, что модуль вектора равен числовому значению вектора . Кроме того, вектор, равный векторному произведению х направлен по перпендикуляру к плоскости DAOB. Причем в ту сторону, откуда кратчайший поворот вектора к направлению вектора представляется происходящим против хода часовой стрелки, т.е. направление векторного произведения х совпадает с направлением вектора . Таким образом, формула (2.11) полностью определяет модуль и направление момента силы .

Правильные многоугольники

У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.

Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.

Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.

Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:

Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:

Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:

Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?

Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:

Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?

Решение. В формулу

Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?

Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:

Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.

Описанная и вписанная окружности правильного многоугольника

Докажем важную теорему о правильном многоуг-ке.

Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.

∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:

Из этого факта вытекает два равенства:

Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):

Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:

Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.

Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.

Так как высоты проведены в равных треуг-ках, то и сами они равны:

Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:

Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.

Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.

Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.

Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?

Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.

Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.

Формулы для правильного многоугольника

Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.

Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу

для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.

Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:

Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:

С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).

Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.

Решение. Запишем следующую формулу:

Это равенство как раз и надо было доказать в этом задании.

Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.

Решение. Запишем формулу:

Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.

Найдем периметр шестиугольника:

Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?

Решение. Зная периметр треуг-ка, легко найдем и его сторону:

Далее вычисляется радиус описанной около треугольника окружности:

Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?

Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:

Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:

Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:

В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:

Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:

∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:

AH = AC/2 = 17/2 = 8,5 мм

Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:

Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.

Построение правильных многоугольников

При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:

Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.

Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:

На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):

Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.

Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.

Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.

Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:

Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.

Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.

В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.

СИЛОВОЙ МНОГОУГОЛЬНИК

геом. фигура, применяемая совместно с верёвочным многоугольником для отыскания равнодействующей неск. сил, располож. произвольно в плоскости. Построение С. м. -позволяет определить значение и направление равнодействующей и представляет собой обычно сложение сил по правилу многоугольника.

Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое «СИЛОВОЙ МНОГОУГОЛЬНИК» в других словарях:

силовой многоугольник — jėgų daugiakampis statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

МНОГОУГОЛЬНИК ВЕРЕВОЧНЫЙ — (Вариньона многоугольник), построение графической статики, к рым можно пользоваться для определения линии действия равнодействующей плоской системы сил, для нахождения реакций опор, изгибающих моментов в сечениях балки, положений центров тяжести… … Физическая энциклопедия

многоугольник сил — jėgų daugiakampis statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

Верёвочный многоугольник — графический метод отыскания опорных реакций и равнодействующих системы сил, построения эпюр изгибающих моментов, определения рациональных очертаний арочных и висячих систем и решения др. задач статики плоских систем. В основу построения В … Большая советская энциклопедия

СЛОЙ СКАЧКА — слой воды в океане (море), в к ром резко изменяется вертикальный градиент океанологич. характеристик (темп ры, солёности, плотности) относительно вышележащих или нижележащих слоев. Сложение сил: а силы F1, F2, F3, . Fn, приложенные к телу; б… … Естествознание. Энциклопедический словарь

Сложение сил — Сложение сил: а силы F1,F2,F3. Fn, приложение к телу; б сложение сил по правилу многоугольника, a b c d..n силовой многоугольник; R равнодействующая сил. СЛОЖЕНИЕ СИЛ, нахождение геометрической суммы (так называемого главного вектора) данной… … Иллюстрированный энциклопедический словарь

Krafteck — jėgų daugiakampis statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

Kräftepolygon — jėgų daugiakampis statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

Kräftevieleck — jėgų daugiakampis statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

jėgų daugiakampis — statusas T sritis fizika atitikmenys: angl. polygon of forces vok. Krafteck, n; Kräftepolygon, n; Kräftevieleck, n rus. многоугольник сил, m; силовой многоугольник, m pranc. polygone des forces, m … Fizikos terminų žodynas

Геометрический способ сложения сил.

Перейдем к рассмо­трению аналитического (численного) метода решения задач статики. Этот метод основывается на понятии о проекции силы на ось. Как и для всякого другого вектора, проекцией силы на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка, заключенного между проекциями начала и конца силы. Проекция имеет знак плюс, если перемещение от ее начала к концу происходит в положительном направлении оси, и знак минус — если в отрицательном. Из определения следует, что проек­ции данной силы на любые параллельные и одинаково направлен­ные оси равны друг другу. Этим удобно пользоваться при вычисле­нии проекции силы на ось, не лежащую в одной плоскости с силой.

Рис. 1

Обозначать проекцию силы на ось Ох будем символом Fx. Тогда для сил, изображенных на рис.1, получим:

Но из чертежа видно, что

т. е. проекция силы на ось равна произведению модуля силы на косинус угла между направлением силы и положительным на­правлением оси. При этом проекция будет положительной, если угол между направлением силы и положительным направлением оси — острый, и отрицательной, если этот угол — тупой; если сила перпен­дикулярна к оси, то ее проекция на ось равна нулю.

Рис.2

Проекцией силы на плоскость Оху называется вектор , заключенный между проекциями начала и конца силы на эту плоскость (рис. 2). Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только своим чис­ленным значением, но и направлением в плоскости Оху. По модулю , где — угол между направ­лением силы и ее проекции .

В некоторых случаях для нахож­дения проекции силы на ось бывает удобнее найти сначала ее проекцию на плоскость, в которой эта ось ле­жит, а затем найденную проекцию на плоскость спроектировать на данную ось.

Например, в случае, изображенном на рис. 2, найдем таким способом, что

Геометрический способ сложения сил.

Решение многих задач механики связано с известной из векторной алгебры операцией сложения векторов и, в частности, сил. Величину, равную геометрической сумме сил какой-нибудь системы, будем называть главным вектором этой системы сил. Понятие о геометрической сумме сил не следует смешивать с понятием о равнодействующей, для многих систем сил, как мы увидим в дальнейшем, равнодействующей вообще не существует, геометрическую же сумму (главный вектор) можно вычислить для любой системы сил.

Геометрическая сумма (главный вектор) любой системы сил определяется или последовательным сло­жением сил системы по правилу параллелограмма, или построением силового многоугольника. Второй способ является более простым и удобным. Для нахождения этим способом суммы сил (рис. 3, a), откладываем от произвольной точки О (рис. 3, б) век­тор Oa, изображающий в выбранном масштабе cилу F1, от точки a откладываем вектор , изображающий силу F2, от точки b откла­дываем вектор bc, изображающий силу F3 и т. д.; от конца m пред­последнего вектора откладываем вектор mn, изображающий силуFn.Соединяя начало первого вектора с концом последнего, получаем вектор , изображающий геометрическую сумму или главный вектор слагаемых сил:

От порядка, в котором будут откладываться векторы сил, модуль и направление не зависят. Легко видеть, что проделанное по­строение представляет собою результат последовательного приме­нения правила силового тре­угольника.

Рис.3

Фигура, построенная на рис. 3,б, называется силовым (в общем случае векторным) многоугольником. Таким обра­зом, геометрическая сумма или главный вектор несколь­ких сил изображается замы­кающей стороной силового многоугольника, построенно­го из этих сил (правило сило­вого многоугольника). При построении векторного многоугольника следует помнить, что у всех слагаемых векторов стрелки должны быть направлены в одну сторону (по обводу многоугольника), а у вектора — в сторону противоположную.

Равнодействующая сходящихся сил. При изучении статики мы будем последовательно переходить от рассмотрения более простых систем сил к более сложным. Начнем с рассмотрения си­стемы сходящихся сил.

Сходящимися называются силы, линии дей­ствия которых пересекаются в одной точке, называемой центром системы (см. рис. 3, а).

По следствию из первых двух аксиом статики система сходящихся сил, действующих на абсолютно твердое тело, эквивалентна системе сил, приложенных в одной точке (на рис. 3, а в точке А).

Последовательно применяя аксиому параллелограмма сил, прихо­дим к выводу, что система сходящихся сил имеет равнодей­ствующую, равную геометрической сумме (главному вектору) этих сил и приложенную в точке их пересечения. Следовательно, если силы сходятся в точке A (рис. 3, а), то сила, равная главному вектору , найденному построением силового мно­гоугольника, и приложенная в точке А, будет равнодействующей этой системы сил.

1. Результат графического определения равнодействующей не изменится, если силы суммировать в другой последовательности, хотя при этом мы получим другой силовой многоугольник — отличный от первого.

2. Фактически силовой многоугольник, составленный из векторов сил заданной системы, является ломаной линией, а не многоугольником в привычном смысле этого слова.

3. Отметим, что в общем случае этот многоугольник будет пространственной фигурой, поэтому графический метод определения равнодействующей удобен только для плоской системы сил.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *