Линейные преобразования для «чайников»
На двух ближайших уроках я вкратце расскажу вам ещё об одном разделе высшей алгебры, который касается линейных преобразований… и тут сразу, заметьте, напрашивается добавить «преобразований чего-то». Тема обширная, тема интересная, и моя скромная задача состоит в том, чтобы в доступной форме донести до читателя её основы. В этой связи статья будет посвящена не только абстрактным алгебраическим вопросам, но и наполнена богатым геометрическим содержанием. Кроме того, сегодня мы обобщим такое важное понятие как вектор, имеющий к сему содержанию лишь частное отношение.
Есть ли среди вас начинающие изучать высшую математику? …хотя, чего тут спрашивать, конечно же, есть… – не смогли ведь пройти мимо заголовка! …Ну вот вы мне и попались, голубчики =) Для эффективного изучения материала нужно знать основы алгебры, аналитической геометрии, а также уметь выполнять действия с матрицами. На самом деле всё довольно просто, но если у вас возникнут вопросы (или уже встретился какой-то непонятный термин), то, пожалуйста, воспользуйтесь ссылками.
Обобщение понятия вектора. Векторное пространство
Ожидание казни хуже самой казни и поэтому лучше сразу почувствовать леденящий холодок настоящей алгебры =) Начнём с обещанного разбора полётов, а именно с понятия вектора. Давайте вспомним, что мы о нём знаем. Палочка со стрелочкой, знакомая ещё из школы. В высшей математике эта палочка «поднялась» до свободного вектора плоскости и пространства. Хорошо…. Далее слово «вектор» встретилось нам в ходе изучения матриц. Так, например, матрицу «один на два» мы называем вектором-строкой, а матрицу «три на один» – вектором-столбцом. Это векторы? Да, это векторы! Причём эти векторы сами по себе не имеют никакого отношения к геометрии. В своих статьях по алгебре я неоднократно оговаривался, что «данный вектор нужно понимать в алгебраическом смысле» и на уроке о ранге матрицы привёл краткую теоретическую справку по этому поводу: вектор – это упорядоченный набор чисел (обычно действительных)… и далее по тексту. А вот это уже более близко к истине: здесь, скажем, двумерный вектор понимается именно как упорядоченная пара чисел, которую, в частности можно интерпретировать, как координаты геометрического вектора. Или как решение системы линейных уравнений (см., например, статью об однородных системах). Или ещё как-нибудь.
Но и это частность! На самом деле в определённом контексте векторами являются матрицы, многочлены, функции и т.д. …и даже наши «обычные» действительные числа! А почему нет? Пожалуйста: множество векторов (никаких геометрических ассоциаций!), имеющих в наборе одно действительное число .
Так что же такое вектор? Что объединяет все эти случаи?
Предположим, что для всех элементов некоторого множества определены операции их сложения и умножения на скаляр , причём результаты этих операций (полученные элементы) тоже принадлежат данному множеству. Если при этом выполнены следующие восемь аксиом (см. по ссылке), то рассматриваемые элементы называются векторами (никаких ассоциаций!!), а всё их множество – векторным или линейным пространством
Обратите внимание на обозначения: абстрактный вектор чаще всего записывают жирной буквой – чтобы не возникало путаницы с различными «конкретными» векторами. Для векторного пространства стандартно используется буква .
Итак, какие бы «частные семейства» векторов мы ни взяли (геометрические, матричные, строковые и т.д.) – для каждой из этих алгебраических структур справедливо следующее:
– все элементы рассматриваемого множества можно складывать и умножать на скаляр (далее работаем с действительными числами), причём результаты этих операций тоже принадлежат данному множеству.
– для операций сложения и умножения выполнены аксиомы векторного пространства.
И здесь следует отметить, что термины «сложение» и «умножение» тоже носят общий символический смысл – в зависимости от природы того или иного векторного пространства эти операции определяются по-разному.
В курсе линейной алгебры проводится скрупулезная проверка различных множеств на предмет того, образуют ли они линейное пространство. И если удастся определить сложение и умножение на скаляр медведей на велосипеде и доказать для данных операций выполнение указанных 8 аксиом, то векторами будут и эти объекты =)
А теперь к основной теме урока:
Что такое линейное преобразование?
Если в линейном пространстве каждому вектору по некоторому правилу поставлен в соответствие вектор этого же пространства, то говорят, что в данном пространстве задана векторная функция векторного аргумента: (во избежание разночтений с другими математическими записями скобки нередко опускают: ).
Данная функция называется линейным преобразованием, если для неё выполнены пресловутые свойства линейности, с которыми вы ещё не раз столкнётесь в ходе изучения высшей математики:
,
, где – произвольные векторы данного пространства, а – действительное число.
Линейное преобразование также называют линейным оператором.
Следующий пример оброс не только бородой, но и волосами на спине: рассмотрим линейное пространство векторов-строк вида , в котором определены операция сложения и умножения вектора на число .
Никакой геометрии. – то, что я сформулировал в статье о ранге матрицы, называется
-мерным арифметическим векторным пространством, и сейчас мы имеем дело с частным арифметическим пространством размерности 2.
Докажем, что функция векторного аргумента является линейным преобразованием. Доказательство состоит в проверке свойств линейности:
Здесь мы воспользовались дистрибутивностью умножения на скаляр относительно сложения векторов (одна из аксиом векторного пространства)
А здесь – аксиомой ассоциативности умножения на скаляр, коммутативностью (перестановочностью) самих действительных чисел (аксиома поля) и снова той же аксиомой ассоциативности.
Читателям, которым предстоит изучать теорию высшей алгебры, следует привыкнуть к таким доказательствам. Беспощадно формально, но, как сказали бы древние римляне, Dura algebra sed algebra =)
Таким образом, – это линейное преобразование.
Разумеется, далеко не всякий оператор является линейным, и в других источниках информации можно найти массу примеров, как на удачную, так и неудачную проверку различных преобразований на линейность. И со строгостью доказательств на практике обычно всё попроще, …хотя, тут от преподавателя зависит – и по-хорошему, в математике ещё нужно обосновать, почему «ноль не равен единице».
Ну а сейчас мы спускаемся на землю грешную и переходим к геометрическому смыслу линейных преобразований. Пусть – это множество геометрических векторов плоскости. Для простоты рассмотрим привычный ортонормированный базис и прямоугольную систему координат .
Если задан какой-либо базис, то линейное преобразование удобнее представить в матричном виде. Как записать оператор в виде матрицы? На этот счёт существует общее правило: чтобы записать матрицу линейного преобразования в -мерном базисе нужно последовательно и строго по порядку применять данный оператор к базисным векторам, а результаты заносить в столбцы матрицы (слева направо).
Наш случай элементарен: сначала применим линейное преобразование к первому базисному вектору: и запишем результат в 1-й столбец: . Затем «обрабатываем» 2-й орт: и заносим полученные координаты во 2-й столбец:
– матрица линейного преобразования в базисе .
Протестируем построенную матрицу с помощью вектора . Для этого «уложим» его координаты в вектор-столбец и выполним следующее матричное умножение:
– в результате «на выходе» получены координаты вектора , что и требовалось проверить.
Поскольку любая точка плоскости однозначно определяется её радиус-вектором ( – начало координат), то матрица преобразования, по существу, применима и к координатам точек. И далее для простоты я буду говорить, что, например, точка :
– перешла в точку .
Наверное, все уже поняли, что делает этот оператор. Мысленно представьте произвольный треугольник на плоскости. После применения рассматриваемого линейного преобразования данный треугольник увеличится в два раза. Такие треугольники (имеющие равные соответствующие углы), как многие помнят из школы, называются подобными. Да и сам оператор носит такое же название:
Линейное преобразование называется преобразованием подобия или гомотетией, причём:
– если , то речь идёт об однородном растяжении (увеличении) объектов плоскости в раз;
– если – то о сжатии (уменьшении) в раз;
– если , то преобразование тождественно (ничего не меняет).
И если меньше нуля, то дополнительно к растяжению/сжатию/неизменности векторы меняют направление, а точки отображаются симметрично относительно начала координат.
При имеет место так называемое нулевое преобразование.
Следует отметить, что на прикладном и «любительском» уровне линейные преобразования чаще всего как раз и ассоциируются именно с геометрическими преобразованиями. Рассмотрим ещё несколько популярных примеров по теме, и, чтобы разнообразить серые геометрические будни, мысленно нарисуем на координатной плоскости кошачью морду. Можно и не мысленно =)
…Представили? Нарисовали? Отлично!
Преобразование растягивает объекты плоскости по направлению вектора (горизонтали) в 2 раза, после чего кот Леопольд радует нас своей широкой-широкой улыбкой!
…хотя у многих, наверное, не кот… да и не факт, что с улыбкой… – как говорится, у каждого в голове своя морда =)
И в самом деле, преобразуем точку :
– «иксовая» координата увеличилась в 2 раза, а «игрековая» – не изменилась.
Преобразование сожмёт кота по горизонтали в 3 раза. Желающие могут по ходу объяснений приготовить мясорубку тестировать для рассматриваемых матриц различные векторы и точки. Читателям с маломальскими навыками матричного умножения не составит особого труда делать это устно.
Преобразование вытянет все ненулевые объекты плоскости по направлению вектора (по вертикали) в полтора раза. Это будет очень удивлённый кот.
Дополнительные знаки «минус» приведут к зеркальному отображению объектов (относительно оси ординат либо начала координат).
– образно говоря, «челюсть налево, лоб направо». Это преобразование называется перекосом или сдвигом плоскости в направлении вектора (в данном случае).
– данное преобразование поворачивает векторы системы против часовой стрелки на угол .
И, наконец, венчает все эти метаморфозы ещё один лохматый пример:
преобразование переводит единичный квадрат с вершинами в параллелограмм с вершинами .
А тут уж дело случая – может получиться, как комната смеха, так и комната страха – зависит от того или иного преобразования.
Из вышесказанного нетрудно понять, что в базисе любой квадратной матрице «два на два» соответствует некоторое линейное преобразование, и наоборот любому линейному преобразованию соответствует своя матрица «два на два». И данный факт справедлив вообще для любого аффинного базиса , причём одно и то же линейное преобразование в разных базисах будет иметь в общем случае разные матрицы (что следует из самого принципа формирования этих матриц).
По аналогичной схеме можно рассмотреть векторы нашего трёхмерного пространства, с тем отличием, что преобразований будет больше, преобразования будут веселее. И, разумеется, линейные преобразования «работают» в векторных пространствах бОльшей размерности, однако там они уже далеки от геометрии.
В некотором аффинном базисе задано линейное преобразование . Найти образ точки . Используя обратное преобразование, выполнить проверку.
Решение: потихоньку нагружаю вас терминологией: образ – это то, что должно получиться в результате преобразования. В данном случае, очевидно, должна получиться некоторая точка . Исходная точка , соответственно, является прообразом.
! Надеюсь, все понимают, что штрихи в данном контексте не имеют никакого отношения к производным.
Образы векторов и точек мы уже неоднократно находили выше:
Таким образом, линейное преобразование перевело точку в точку .
Теперь найдём матрицу обратного преобразования, которое превращает образы векторов и точек обратно в их прообразы. Для этого запишем простейшее матричное уравнение (где – координатный столбец прообразов, а – образов) и для его разрешения относительно умножим обе части на обратную матрицу слева:
«Развернём» уравнение в привычном порядке:
Обратную матрицу можно найти через алгебраические дополнения либо методом Гаусса-Жордана, но здесь я рекомендую первый способ, поскольку он позволит быстро выяснить, а существует ли матрица вообще.
Заряжаем стандартный алгоритм. Сначала вычислим определитель:
, значит, матрица линейного преобразования обратима. С содержательной точки зрения это означает, что обратное линейное преобразование существует и задаётся оно в точности матрицей .
Здесь и далее я не буду подробно расписывать процесс нахождения обратной матрицы. Итак, в результате стандартных действий находим и выясняем, во что превратится найденная точка :
– получены координаты исходной точки , что и требовалось проверить.
Ответ:
Следует отметить, что обратное преобразование осуществимо далеко не всегда. Так бывает, например, при проектировании векторов на координатные оси или при тривиальном нулевом преобразовании. В таких случаях определитель матрицы прямого оператора равен нулю и обратной матрицы не существует.
Творческая задача для самостоятельного решения:
В результате применения оператора в некотором базисе получены образы . Найти прообразы данных векторов.
Краткое решение и ответ в конце урока. Обратите внимание, что формулировка данной задачи вовсе не утверждает, что речь идёт именно о геометрических векторах. Как оно, собственно, и бывает в большинстве типовых заданий, которые для полного комфорта оформляются малопонятной клинописью:
Даны два линейных преобразования:
Спокойно, спокойно, сейчас во всём разберёмся…
Средствами матричного исчисления найти преобразование, выражающее через .
Решение: и как раз первое, что здесь можно сказать – это отсутствие информации о характере векторов . Известно только, что они заданы в некотором базисе, ибо матрица линейного преобразования НЕ МОЖЕТ существовать без базиса (т.к. она порождается базисными векторами). Сам базис нам тоже не известен, но для решения задачи информация о нём и не нужна.
Тем не менее, для пущего понимания предположим, что все дела происходят в обычной декартовой системе координат . И, чтобы не прослыть живодёром, я рассмотрю 3D-модель кота Леопольда =)
Запишем матрицу левого преобразования: . Данное преобразование переводит векторы в образы . Систему, кстати, удобнее переписать в виде уже знакомого матричного уравнения:
или, если короче: .
Данный оператор определённым образом преобразует все векторы (а значит и точки) пространства. Геометрически это означает, что кот Леопольд, оказывается, например, сплющенным (не знаю, не проверял).
Теперь ВНИМАТЕЛЬНО записываем матрицу второго преобразования: (здесь существует немалый риск поставить ноль не там где нужно). Данное преобразование переводит векторы в образы , в результате чего «сплющенный кот», скажем, растягивается вдоль какой-нибудь плоскости.
Аналогично – запишем преобразование в матричном виде:
или:
По условию, нужно найти результирующее (композиционное) преобразование, которое нам сразу даст «сплющенного и растянутого Леопольда». Подставим в уравнение :
Всё оказалось до безобразия просто – главное, матрицы перемножить в правильном порядке. Вычислим матрицу композиционного преобразования:
Если вы позабыли само матричное умножение, обратитесь к статье Свойства матричных операций, где я подробнейшим образом разобрал этот случай.
Осуществим матричное умножение в правой части:
Две матрицы равны, если равны их соответствующие элементы. Таким образом, итоговое преобразование, выражающее координаты векторов-образов через координаты векторов-прообразов, запишется в виде следующей системы:
Выполним проверку. Для этого подставим уравнения , левой системы (см. условие) в правую часть каждого уравнения 2-й системы:
Что и требовалось проверить.
Этот способ, кстати, можно было бы рискнуть взять и за основой, если бы итоговое преобразование не требовалось найти средствами матричного исчисления
Ответ:
Как пользоваться этой системой? Очень просто – берём например, вектор и тупо подставляем его координаты:
– таким образом, он превратился в вектор .
Более академичный способ – использование матричного уравнения .
Энтузиасты могут смоделировать деформацию кота Леопольда с помощью специализированного программного обеспечения и отправить мне картинку, которую я обязательно опубликую. Мне и самому интересно, что же там с ним на самом деле произошло =)
В том случае, если нужно «вернуть кота к первоначальному виду», следует найти обратную матрицу результирующего преобразования и воспользоваться уравнением .
«Плоский» случай для самостоятельного решения:
Даны два линейных преобразования в некотором базисе:
Найти образ вектора двумя способами:
1) путём последовательного применения преобразований и ;
2) с помощью композиционного оператора, выражающего координаты через .
Был велик соблазн вас запутать, но всё же я воздержался. Однако на практике нужно иметь в виду следующее:
– системы запросто могут быть переставлены местами;
– условие задачи может требовать выразить через и тогда потребуется дополнительно находить обратную матрицу результирующего преобразования;
В этой связи очень важно РАЗОБРАТЬСЯ в сути задания, и если что-то осталось недопонятым, обязательно перечитайте объяснения ещё раз – не лишним будет даже порисовать.
А сейчас переходим к вопросу, который назревал в течение всего урока:
Матрица линейного преобразования в различных базисах
В начале статьи мы выяснили происхождение матрицы линейного преобразования на примере оператора и ортонормированного базиса . Напоминаю: для того, чтобы записать матрицу линейного оператора в каком-либо базисе, нужно строго по порядку подействовать этим оператором на базисные векторы и полученные координаты занести в столбцы матрицы (слева направо). В результате «обработки» векторов нами была составлена матрица данного линейного преобразования в данном базисе.
Но ведь на «школьном» базисе свет клином не сошёлся! Ничто нам не мешает перейти к произвольному базису , где это же линейное преобразование, очевидно, выразится другой матрицей. Но сам-то оператор не изменится – он будет по-прежнему увеличивать векторы плоскости в 2 раза. Таким образом, справедливо следующее утверждение, которое по существу уже было озвучено ранее:
Одно и то же линейное преобразование в разных базисах в общем случае имеет РАЗНЫЕ матрицы.
И следующие две задачи как раз посвящены этому вопросу:
В базисе задано линейное преобразование . Найти матрицу данного преобразования в базисе , если
Решение: в условии задачи опять ничего не сказано о характере векторов, но для наглядности предположим, что данные базисы являются аффинным базисами плоскости. Как заметили внимательные читатели, предложенное линейное преобразование вытягивает все ненулевые объекты плоскости в направлении координатного вектора в 2 раза, и наша задача состоит в том, чтобы записать матрицу этого же преобразования в новом базисе . Для решения этого вопроса существует специальная формула:
, где – матрица перехода от базиса к базису .
Составляется она просто: берём вектор и «укладываем» коэффициенты его разложения (внимание!) в 1-й столбец матрицы: . Затем рассматриваем вектор и заносим коэффициенты его разложения во 2-й столбец:
Внимание! Базисные векторы, в данном случае векторы , следует «перебирать» строго по порядку!
Остальное дело техники. Находим обратную матрицу:
И, наконец, матрицу рассматриваемого линейного преобразования в новом базисе:
Пользуясь ассоциативностью матричного умножения, можно было сначала найти , а затем , но, в общем-то, это уже несущественные детали.
Ответ:
Ещё раз повторим смысл задания: само линейное преобразование не поменялось – оно по-прежнему растягивает ненулевые объекты плоскости вдоль «старого» вектора в 2 раза и не деформирует их в направлении вектора , но в новом базисе матрица данного преобразования уже другая. И вы видите её в ответе.
Очевидно, что найденная матрица задаёт обратное преобразование, т.е. выражает старые базисные векторы через новые. Аккуратно «транспонируем» столбцы матрицы в коэффициенты соответствующей системы: . Таким образом, при желании всегда можно вернуться к старому базису: . Обратная формула следует из простых логических соображений, но её можно вывести и формально – разрешив матричное уравнение относительно .
Иногда матрицы и называют подобными.
Какой базис удобнее? Конечно же, исходный, который задаётся матрицей – он сразу позволяет выяснить характер линейного преобразования. И что это за такой интересный базис, и как получить эту матрицу другим способом, вы узнаете на уроке о собственных векторах.
Трехмерный случай для самостоятельного решения:
Найти матрицу линейного преобразования в базисе , где , , , если она задана в базисе .
Пожалуйста, не путайте это задание с Примером № 3 – по первой оглядке здесь тоже какие-то похожие равенства, тоже штрихи, но смысл совершено другой. Если там шла речь о двух линейных преобразованиях и взаимосвязи координат векторов, то здесь – об одном и том же преобразовании и взаимосвязи векторов двух базисов.
Краткое решение и ответ совсем рядом.
И в завершении урока вернёмся к двумерному случаю и матрицам «два на два». Казалось бы, с геометрической точки зрения эти матрицы задают линейные преобразования плоскости и разговор закончен. Но на самом деле это не так – у матриц есть и другой геометрический смысл, с которым можно ознакомиться на уроке Переход к новому базису. Сначала я хотел включить пару соответствующих примеров в эту статью, но чуть позже решил, что материал будет уместнее опубликовать в разделе аналитической геометрии.
Ну и конечно, не забываем, что рассматриваемый материал касается не только геометрических векторов плоскости и пространства, но и вообще любых векторов.
Спасибо за внимание, жду вас на следующем, не менее увлекательном уроке о собственных числах и собственных векторах линейного преобразования.
Решения и ответы:
Пример 2: Решение: найдём матрицу обратного преобразования:
(см. урок. Как найти обратную матрицу)
Найдём прообразы:
Ответ:
Пример 4: Решение: запишем матрицы преобразований:
1) Последовательно применим к вектору преобразования и :
2) Найдём результирующее преобразование:
Таким образом:
Ответ: (нулевой вектор)
Пример 6: Решение: Решение: Используем формулу . Запишем матрицу перехода к новому базису:
Найдём матрицу обратного перехода:
Вычислим:
Ответ:
Автор: Емелин Александр
(Переход на главную страницу)
«Всё сдал!» — онлайн-сервис помощи студентам
Zaochnik.com – профессиональная помощь студентам,
cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys
Линейные преобразования
Линейные преобразования. Собственные векторы и собственные числа линейного оператора
Линейные преобразования (линейные операторы). Матрица линейного преобразования
Пусть задано -мерный пространство
. Если каждому вектору
поставлено в соответствие единственный вектор
этого же пространства, говорится, что в векторном пространстве задано преобразование
, или оператор
.
Вектор — результат линейного преобразования — называют образом вектора
, а выходной вектор
— прообразом вектора
.
Преобразование называется линейным преобразованием, или линейным оператором, если для произвольных векторов
и произвольного действительного скаляра
выполняются условия:
То есть линейный оператор преобразует пространство в то самое пространство. Это записывается следующим образом:
Примерами простейших линейных преобразований являются:
тождественное преобразование: , когда каждый
-мерный вектор пространства превращается в самого себя, то есть остается без изменения;
нулевой оператор , когда каждый
-мерный вектор пространства превращается в ноль-вектор этого же пространства, то есть
Линейное преобразование , с помощью которого осуществляется восстановление вектора
по его образу
, называется обратным к
линейным преобразованием. В отличие от матрицы оператор записывают
каллиграфическим
шрифтом.
Рассмотрим задачу об отыскании координат образа вектора .
Пусть в пространстве выбрано базис
(не обязательно ортонормированный) и
есть координатами вектора
в этом базисе. Обозначим через
координаты вектора
в выбранном базисе. по условию
, тогда согласно линейностью оператора
получим :
Но образы тоже являются векторами с
, поэтому иx можно разложить по тому же базисом. Пусть
где коэффициенты разложения вектора
по базису
С учетом (5.5) соотношение (5.4) принимает вид:
Группируя члены правой части относительно векторов базиса, имеем:
С другой стороны, если являются координатами вектора
в базисе
то его можно представить следующим образом:
Сопоставляем (5.8) из (5.7) и получаем координаты вектора :
Следовательно, при линейном преобразовании:
координаты образа вектора являются линейными комбинациями координат прообраза, коэффициенты при которых составляют матрицу -го порядка (обозначим ее через
):
Матрица , которая в произведении (слева) с вектором с
определяет координаты его образа при линейном преобразовании
, Называется матрицей линейного преобразования
в базисе
и пишут:
Каждый — -й — столбец матрицы
составляют коэффициенты разложения вектора
по базису
каждая —
-я — строка определяет коэффициенты разложения координат вектора
по координатам вектора
.
Обратите внимание, что — нераздельный символ (обозначение вектораобраза), а
— произведение матрицы с вектором (прообразом).
Каждому линейном оператору -мерного пространства отвечает матрица
-го порядка в данном базисе. И наоборот, каждой матрицы
-го порядка отвечает линейный оператор
-мерного пространства с определенным базисом.
Например, с помощью оператора линейных преобразований можно описать поворот произвольного вектора с пространства вокруг начала координат на угол
против часовой стрелки. Формулы поворота осей координат (формулы перехода от исходных координат
и
к новым
и
, и наоборот ) определяют алгебраическую форму изображения линейного оператора поворота осей:
где оператор перехода от исходных (новых) координат к новым (исходных);
векторы, началом которых является точка
, а концами —
точки и
, соответственно.
По соотношению (5.12) матрица линейного преобразования> , Описывающий поворот произвольного вектора из пространства
вокруг начала координат на угол
против часовой стрелки, имеет вид:
а матрица обратного линейного преобразования , то есть такого, что описывает поворот произвольного вектора из пространства
вокруг начала координат на угол
по часовой стрелке, имеет вид:
Теорема 5.1 (о связи между матрицами оператора в различных базисах).
Матрицы и
линейного оператора
в разных базисах
и
связаны между собой соотношением:
где матрица перехода от исходного к новому базису.
Доказательство. Пусть линейный оператор превращает вектор
пространства
в вектор
того самого пространства. Тогда в матричной форме связь между вектором
и его образом
в исходном базисе можно записать как
, а в новом — как
. Поскольку
является матрицей перехода от исходного базиса к новому, то в соответствии с (4.18) имеем:
Умножим равенство (5.14) слева на матрицу и получим
. Отсюда по определению линейного оператора имеем:
. С учетом (5.15):
Сравнив соотношение и
, получаем
Две квадратные матрицы и
называются подобными, если существует такая невырожденная матрица
, матрицы
и
связанные соотношениями:
Соответствующие линейные операторы называются преобразованиями сходства.
Подобные матрицы описывают то же линейное преобразование, но в разных базисах, а матрица является матрицей перехода от одного базиса к другому.
Подобные матрицы имеют те же ранги, суммы элементов главной диагонали и определители.
В базисе и
задана матрица линейного оператора
:
Определим матрицу , которая отвечает том же оператору в базисе векторов
и
есть матрица
подобна матрице
.
Предоставим расписание векторов нового базиса по векторам исходного базиса: . Соответственно, матрица перехода от исходного к новому базису имеет вид:
Ее определитель , то есть матрица
невырожденная и имеет обратную:
По теореме 5.1 определяем матрицу оператора в новом базисе:
Обратите внимание, что в новом базисе матрица оператора оказалась диагональной.
Собственные векторы и собственные числа линейного оператора: определение, свойства
Рассмотрим -мерных линейный пространство
с определенным базисом и матрицу
, некоторого линейного оператора
пространства.
Ненулевой вектор называют собственным, или характеристическим вектором линейного оператора
(или матрицы
), если существует такое действительное число
, имеет место равенство:
Скаляр называется собственным, или характеристическим, числом матрицы
, или ее собственным значением, соответствует собственному вектору
:
Согласно определениями собственного числа и собственного вектора имеем:
1) Если , то каждый ненулевой вектор из
является собственным вектором матрицы
, при этом
, ведь по свойству единичной матрицы имеем
;
2) любой ненулевой -мерный вектор является собственным вектором нулевой матрицы
, при этом
, так как
.
Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы
Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы
Запишем матричное уравнение (5.17) в развернутом виде:
Таким образом, задача сводится к решению однородной системы линейных уравнений с
неизвестными. Нас интересуют (по определению собственного вектора) только ненулевые векторы, то есть нетривиальные решения системы, поэтому определитель системы (5.18) должен быть равен нулю:
Раскрытие определителя в соотношении (5.19) дает многочлен степени относительно
, который называется характеристическим многочленом матрицы
, а соотношение (5.19), которое можно представить в виде
, определяет уравнение для нахождения собственных чисел, которое называют характеристическим уравнением матрицы
.
По основной теореме алгебры уравнения любой матрицы
имеет
корней, если каждый из них считать столько раз, какова его кратность. Характеристическое уравнение матрицы может иметь только действительные, но и комплексные корни, то есть числа вида
где
действительные числа,
мнимая единица.
Множество всех собственных чисел матрицы называют спектром матрицы. Если в спектре матрицы то же собственное число повторяется раз, то говорят, что кратность этого собственного числа равна
.
Теорема 5.2 (о единственности собственного чucлa, что соответствует собственному вектору). Если — собственный вектор матрицы
, то существует единственный скаляр
, который удовлетворяет условие
.
Доказательство. Предположим, что кроме собственного числа существует еще один
скаляр , такой, что
. Тогда должно выполняться равенство
. Поскольку по определению собственный вектор является ненулевым, то есть
, получим
.
Согласно теореме 5.2 говорят, что собственный вектор из матрицы
принадлежит собственному числу
.
Теорема 5.3 (о множестве собственных векторов, принадлежащих собственному числу). Если матрица имеет собственный вектор, принадлежащий собственному числу , то таких векторов бесконечно много.
Доказательство базируется на определении собственного вектора и свойствах ассоциативности и коммутативности операции умножения матрицы на скаляр.
Действительно, пусть собственный вектор матрицы
, тогда
. Привлечем к рассмотрению вектор
, коллинеарный вектору
, то есть
, где
, и покажем, что в также является собственным вектором матрицы
:
Поскольку равенство (5.19) выполняется для произвольного , то существует множество собственных векторов, принадлежащих данному собственному числу.
Теорема 5.4 (критерий существования собственного вектора , соответствующего собственному числу
). Вектор
тогда и только тогда является собственным вектором матрицы
, соответствующим собственному числу
, когда его координаты
образуют ненулевое решение однородной квадратной системы линейных алгебраических уравнений
или
Доказательство сводится к тождественных преобразований матричных уравнений.
Необходимость уже доказано переходом от соотношения , к однородной системе линейных уравнений
, представленной в развернутом виде (5 18).
Достаточность. На основании свойств действий над матрицами с учетом условия , осуществит переход от однородной системы уравнений в матричной форме с соотношением
:
Теорема 5.5 (пpo линейную независимость собственных векторов). Собственные векторы, принадлежащие различным собственным числам, является линейно независимыми.
Доказательство проведем методом от противного. Пусть два произвольные собственные векторы, принадлежащие соответственно собственным числам
и
. Необходимо показать, что линейная комбинация этих собственных векторов
ноль-вектор только тогда, когда
, то есть
Предположим обратное. Пусть (5.23) выполняется при условии, что одно из чисел не является нулем, например,
Умножим левую и правую части (5.23) на собственное число . Тогда
Левую и правую части равенства (5.23) умножим на матрицу слева, и, учитывая свойства операций над матрицами, получим:
Сравним (5.25) и (5.24). Получаем:
По условию теоремы . По определению вектор
является ненулевым, поэтому равенство (5.26) возможно только при
, то есть предположение о линейной зависимости векторов
и
ошибочно.
Если есть более двух собственных векторов, принадлежащих попарно различным собственным числам, доведение аналогичное (с использованием метода математической индукции).
Заметим, что собственные векторы, принадлежащих различным собственным числам, можно использовать как базисные векторы пространства .
Теорема 5.6 (пpo сумму и произведение собственных чисел). Если собственные числа матрицы
, то:
1) сумма собственных чисел равна сумме элементов главной диагонали матрицы :
2) произведение собственных чисел равна определителю матрицы :
Доказательство основывается на формулах Виета, которые описывают соотношение между корнями и коэффициентами многочлена -гo степени в случае, когда его старший коэффициент равен единице.
Рассмотрим простейший случай . Запишем характеристическое уравнение в развернутом виде:
С (5.29) по теореме Виета (для квадратного уравнения) имеем:
Сумму всех диагональных элементов матрицы называют следом (от нем. spur — след) этой матрицы и обозначают .
Для квадратной матрицы произвольного порядка теорему 5.6 в символьном виде можно записать так:
при этом собственное число берем столько раз, какова его кратность как корня характеристического уравнения (5.29).
Нахождение собственных чисел и собственных векторов
Рассмотрим алгоритм нахождения собственных чисел матрицы и собственных векторов, которые им принадлежат.
Согласно соотношениями (5.18) и (5.19) имеем такой порядок отыскания собственных чисел и собственных векторов матрицы.
1. Составляем по исходной матрицей характеристическое уравнение (5.18) и решаем его, то есть находим спектр собственных чисел.
2. Подставляем поочередно каждое собственное число в систему (5.18) и находим все ее нетривиальные решения, что и дает множество собственных векторов, принадлежащих соответствующему собственному числу.
Замечания. Множество всех собственных векторов, принадлежащих определенному собственному числу, можно представить как линейную комбинацию фундаментальных решений однородной системы уравнений согласно (4.19), гл. 4.
Найдем собственные числа и собственные векторы матрицы
Характерным уравнением этой матрицы является квадратное уравнение:
Решив его, получим собственные числа и
Теперь описываем множества и
всех собственных векторов, принадлежащих найденным собственным числам.
Для этого в матрицу вместо
подставим поочередно значения собственных чисел, запишем соответствующую систему однородных линейных уравнений (5.18) и решим ее:
Предоставляя параметру произвольных значений, для данного собственного числа
получим совокупность коллинеарных между собой собственных векторов.
Теорема 5.7 (про собственные числа и собственные векторы симметричной матрицы).
Симметричная матрица имеет только действительные собственные числа. Собственные векторы, принадлежащие разным собственным числам, ортогональны и линейно независимы.
Теорема приводим без доказательства.
Проиллюстрируем прав выводов данной теоремы на примере.
Пусть имеем симметричную матрицу
Найдем собственные числа и собственные векторы этой матрицы и докажем ортогональность собственных векторов, соответствующих различным собственным числам.
1. Составим характеристическое уравнение матрицы
2. Найдем корни полученного кубического уравнения относительно . С элементарной алгебры известно, если многочлен со старшим коэффициентом, равным единице, имеет целые корни, то их следует искать среди делителей свободного члена. Перебирая делители числа 36, убеждаемся, что
является корнем уравнения (5.30).
Нахождение других двух корней сводится к решению квадратного уравнения:
3. Опишем множества и
собственных векторов, принадлежащих найденным собственным числам.
Для этого в матрицу вместо
подставляем поочередно значения собственных чисел, записываем соответствующую систему однородных линейных уравнений (5.17) и решаем ее методом Жордана-Гаусса:
Аналогично находим собственные векторы и
Система векторов и
является линейно независимой, поскольку
Убеждаемся, что векторы и
— попарно ортогональны.
Для этого определим их скалярные произведения:
Поскольку скалярные произведения векторов равны нулю, то векторы попарно ортогональны.
Если в выражениях (5.31-5.33) положить , то получим систему векторов:
которая использовалась как базис пространства в примере после теоремы
и
. В таком базисе, то есть базисе из собственных векторов, матрица оператора
оказалась диагональной, ее ненулевыми элементами являются собственные числа матрицы
.
Теорема 5.8 (о преобразовании матрицы к диагональному виду). Матрица линейного оператора в базисе
имеет диагональный вид тогда и только тогда, когда все векторы базиса являются собственными векторами матрицы
.
Теорему наводим без доказательств
Заметим, что при нахождении собственных чисел для заданной матрицы самой задачей является решение алгебраического уравнения -й степени, что во многих случаях сделать невозможно без использования приближенных методов. Изучение приближенных методов выходит за пределы программы. Поэтому предлагаем воспользоваться известными программами MatLab, MathCad, Maple и др.
Следующий пример был решен в пакете MatLab, в котором конечный результат вычислений предоставляется без промежуточных выкладок.
Найдем собственные числа и соответствующие им собственные векторы матрицы
Характерным уравнением для нахождения собственных чисел является уравнение
корнями которого будут числа а соответствующие им собственные векторы имеют вид:
Собственные числа и собственные векторы матриц имеют широкий спектр использования, в частности, в аналитической геометрии (Раздел 2), в задачах различных отраслей естественных наук и эконометрики.
Базис пространства из собственных векторов линейного оператора
По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Возникает вопрос, при каких условиях существует базис линейного пространства , построенный из собственных векторов матрицы.
Лема. Если является собственным числом матрицы
, то множество собственных векторов матрицы
содержит
линейно независимых векторов, где
— ранг матрицы
.
Доказательство. Согласно теореме 5.4 множество собственных векторов совпадает с множеством всех решений однородной системы линейных уравнений:
где — собственный вектор матрицы
, что соответствует собственному числу
. По теореме 4.4 такая система имеет фундаментальную систему решений, количество векторов которой равна
, то есть содержит
— линейно независимых векторов.
Теорема 5.9 (о существовании базиса из собственных векторов матрицы). Пусть числа образуют множество всех различных собственных чисел матрицы
. Если сумма рангов матриц
равна
, то в пространстве
существует базис из собственных векторов матрицы
.
Доказательство. Согласно лемме каждое множество собственных векторов, соответствующих уравнению , содержит независимые векторы в количестве
. По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Тогда для матрицы
общее количество линейно независимых собственных векторов составляет:
Поскольку собственные векторы матрицы в совокупности составляют систему
линейно независимых векторов, то они образуют базис пространства
.
Теорема 5.10 (о существовании базиса из собственных векторов симметричной матрицы). Если матрица линейного оператора симметрична, то в пространстве
существует базис, образованный из собственных векторов матрицы
.
Теорему принимаем без доказательств.
Построим ортонормированный базис пространства , состоящий из собственных векторов матрицы
линейного преобразования , и найдем матрицу
заданного преобразования в этом базисе.
Согласно теореме 5.9 такой базис существует, поскольку матрица является симметричной матрицей. Составим характеристическое уравнение матрицы
:
и решим его: (собственное значение кратности
) и
Для каждого из двух различных собственных чисел матрицы определим фундаментальную систему решений однородной системы уравнений: . При
в результате элементарных преобразований основной матрицы системы получаем:
По последним шагом элементарных преобразований матрицы записываем общее решение системы:
Определяем фундаментальную систему решений однородной системы уравнений
Собственные векторы и
являются ортогональными, поскольку их скалярное произведение равно нулю:
При в результате элементарных преобразований основной матрицы системы получаем:
По последнем шагом элементарных преобразований матрицы записываем общее решение системы:
Возлагаем и получаем фундаментальный решение однородной системы уравнений
Поскольку и
, то все три вектора попарно ортогональны. Объединив полученные фундаментальные системы решений, иметь систему собственных векторов матрицы
. Они образуют ортогональный базис пространства
. После нормирования векторы приобретают вид:
Это и есть ортогональный базис пространства , состоящий из собственных векторов матрицы
.
По соотношению (5.13) определим матрицу , что соответствует оператору
в базисе из собственных векторов. Согласно теореме 5.8 эта матрица будет иметь диагональный вид, а элементами ее главной диагонали будут собственные числа этой матрицы. Заключим с собственными векторами
,
и
матрицу
перехода к новому базису и найдем обратную к ней матрицу
:
По матричным уравнением (5.13) находим матрицу , что соответствует оператору
в базисе из собственных векторов:
Следовательно, мы получили диагональную матрицу третьего порядка, элементами главной диагонали которой есть собственные числа матрицы .
Далее приведен пример применения собственных векторов и собственных чисел в одной из многих задач экономики.
Линейная модель обмена (модель международной торговли)
Практически все страны кроме внутреннего товарообмена осуществляют внешний товарообмен, то есть занимаются внешней торговлей. Торговля считается сбалансированной, или бездефицитной, если для каждой страны прибыль от торговли не меньше объем средств, которые она вкладывает в товарооборот (внутренний и внешний).
Постановка задачи. Несколько стран осуществляют взаимный товарообмен. Известную долю бюджетных средств, тратит каждая страна на закупку товаров у другой страны, учитывая и внутренний товарооборот. Определить, каким должно быть соотношение бюджетов партнеров для того, чтобы обеспечить бездефицитность торговли.
Построение математической модели. Введем обозначения количественных характеристик, описывающих торговлю между странами, и определим связь между этими характеристиками. Пусть — страны, участвующие в международной торговле. Доли средств, которые тратит страна
на закупку товаров в стране
, учитывая и внутренний товарооборот
, обозначим через
. Понятно, что
Матрицу , элементами которой являются числа
, называют структурной матрицей торговли:
Эта матрица описывает взаимодействие стран в процессе международной торговли. Соотношение (5.34) означает, что сумма элементов каждого столбца матрицы равна
1. Если объем средств, которые тратит каждая страна на торговлю, обозначить через , соответственно, то прибыль
страны
от внутренней и внешней торговли составит
Чтобы торговля каждой страны была сбалансированной, по определению должно выполняться условие , и
, то есть прибыль от торговли не должна быть меньше расходов. Однако соблюдение этого требования в виде неравенства невозможно для всех стран в совокупности. Действительно, добавим левые и правые части указанных неровностей, изменяя
от единицы до
:
Группируя в левой части слагаемые, содержащие каждое из , получим:
Учитывая соотношение (5.20), получим:
Отсюда следует, что сбалансированная торговля возможна только в случае знака равенства. Это, полагаем, понятно не только на основании аналитических выкладок, но и с экономической точки зрения (и даже просто с точки зрения здравого смысла): все страны в совокупности не могут получить прибыль. Более того, для одной из стран не может выполняться знак строгого неравенства .
Итак, условием сбалансированной торговли является равенства , и
, из которых получим:
Введем в рассмотрение вектор (бюджетных) средств и подадим систему (5.39) в матричной форме:
С (5.40) следует, что при условии сбалансированности торговли между странами вектор средств должен быть собственным вектором структурной матрицы торговли
, который принадлежит собственному числу
. Таким образом, решение задачи сводится к нахождению этого собственного вектора
, компоненты которого устанавливают соотношение между бюджетами стран, участвующих в товарообмене.
Рассмотрим товарообмен между тремя странами. Пусть структурная матрица торговли стран , имеет вид:
Найдем вектор средств, компонентами которого являются доли от общего объема торговли, должна вкладывать каждая из стран во внешней товарооборот для того, чтобы торговля была сбалансированной.
Искомый вектор средств является собственным вектором структурной матрицы, принадлежащий собственному значению . Его компоненты образуют ненулевое решение однородной СЛАУ:
Поскольку система является однородной, то расширенная матрица эквивалентна основной матрицы системы. Осуществим элементарные преобразования основной матрицы этой системы уравнений:
Находим общее решение системы, в котором — базисные переменные,
— свободная переменная:
Отсюда следует, что для сбалансированности торговли необходимо, чтобы средства, которые вкладывает в внешний товарооборот каждая страна, соотносились как
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Построение матрицы линейного оператора
Построение матрицы по заданной формуле отображения.
Пусть отображение задано с помощью формулы:
то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор , найдём его образ, это будет вектор . Для этого в формуле, задающей образ вектора, полагаем , ,…, . Аналогично находим образы для ,…, . Из координат образа вектора составляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.
Пример 1. Пусть оператор задан с помощью формулы:
Прежде всего, докажем, что это отображение – действительно линейный оператор.
Отобразим сумму векторов:
Теперь каждую координату получившегося вектора можем преобразовать:
Аналогично для умножения на константу:
Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).
Поэтому матрица линейного оператора будет иметь вид:
Аналогичным способом решается задача и для 3 и большего количества переменных.
Пример 2. .
Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).
Матрица линейного оператора:
2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.
Если задана система из n векторов, образующих базис, и какая-нибудь произвольная система n векторов (возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.
Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.
Пусть — матрица оператора в базисе . По условию, для всех индексов . Данные n равенств можно записать в виде одного матричного равенства: , при этом столбцы матрицы — это векторы , а столбцы матрицы — векторы . Тогда матрица может быть найдена в виде .
Пример. Найти матрицу линейного оператора, отображающего базис
в систему векторов .
Здесь , , , и получаем:
Проверка осуществляется умножением получившейся матрицы на каждый вектор: .
Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.
2.3. Прочие способы нахождения матрицы оператора.
Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.
Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида и . Построим матрицу одного из этих операторов, . Для этого найдём образы всех трёх базисных векторов линейного пространства.
Координаты полученных векторов запишем в виде столбцов матрицы оператора.
Аналогично можно построить матрицу линейного оператора :
Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы , , ,…, .
Матрица этого линейного оператора:
Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.
Матрица линейного оператора. преобразование подобия. собственные значения и собственные векторы линейного оператора. диагонализация матриц
Задание 1. Линейный оператор преобразует векторы , , в векторы , , . Найти матрицу линейного оператора.
Связаны между собой соотношением , откуда .
Так как , то , а искомая матрица линейного оператора .
Задание 2. Пусть линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если матрица является матрицей перехода от базиса к базису .
Решение. Матрицы и линейного оператора , заданного в разных базисах, связаны между собой соотношением . Так как , то
Задание 3. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .
Решение. Связь между матрицами и линейного оператора в разных базисах определяется формулой , где – матрица перехода от базиса к базису .
Составим матрицу : , тогда и, следовательно,
Задание 4. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .
Решение. Матрицы и связаны между собой соотношением , где – матрица перехода от базиса к базису .
Составим матрицу : , тогда и, следовательно,
Задание 5. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей .
Решение. Для нахождения собственных значений линейного оператора составим характеристическое уравнение , т. е. . Раскрывая определитель, получим , т. е. , .
По определению называется собственным вектором линейного оператора , соответствующим собственному значению , если .
Найдём собственные векторы и , соответствующие собственным значениям и .
При получим: , что равносильно такой однородной системе уравнений:
Если – базисная переменная, а – свободная, то .
При : , что равносильно однородной системе уравнений
Пусть – базисная переменная, – свободная. Примем , тогда , а следовательно, .
Так как собственные векторы соответствуют различным собственным значениям, то они должны быть линейно независимы. Проверим линейную независимость полученных собственных векторов и .
Составим матрицу . Так как , то собственные векторы и линейно независимы.
Ответ: собственные числа , ; собственные векторы , .
Задание 6. Привести матрицу линейного оператора к диагональному виду.
Решение. Матрица линейного оператора будет диагональной в базисе из собственных векторов, если такой базис существует. Найдём собственные значения и собственные векторы линейного оператора.
Запишем характеристическое уравнение: , т. е. или , откуда получаем , .
Найдём собственные векторы И .
При получим: , что соответствует следующей однородной системе уравнений:
Пусть – базисная переменная, – свободная. Полагая , получим .
При : . Соответствующая однородная система уравнений имеет вид:
Откуда . Пусть – базисная переменная, – свободная, примем тогда , а, следовательно, .
Собственные векторы и отвечают различным собственным значениям, поэтому они линейно независимы, т. е. могут составить базис. Матрица линейного оператора в базисе из собственных векторов и имеет диагональный вид: .
Можно проверить полученный результат. Так как , где матрица в случае перехода к базису из собственных векторов и имеет вид , следовательно,
Задание 7. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей . Построить, если это возможно, базис из собственных векторов и найти матрицу этого линейного оператора в базисе из собственных векторов.
Решение. Запишем характеристическое уравнение:
Найдём собственные векторы линейного оператора.
При : , тогда соответствующая однородная система уравнений примет вид:
Что равносильно такой системе:
Пусть и – базисные переменные, – свободная. Полагая , получим .
При : , или, переходя к однородной системе уравнений, получим
Пусть и – базисные переменные, – свободная. Если , то .
При получим: , и однородная система уравнений примет вид:
Пусть и – базисные переменные, – свободная. Тогда если , то . Найденные собственные векторы соответствуют различным собственным значениям, поэтому они линейно независимы, значит, существует базис из собственных векторов. Матрица перехода к такому базису , тогда
Матрица линейного оператора в базисе из собственных векторов имеет вид: .
Можно сделать проверку полученных результатов:
Ответ: , , ; , , ; матрица линейного оператора в базисе из собственных векторов .