Как найти матрицу оператора в базисе

Линейные преобразования для «чайников»

На двух ближайших уроках я вкратце расскажу вам ещё об одном разделе высшей алгебры, который касается линейных преобразований… и тут сразу, заметьте, напрашивается добавить «преобразований чего-то». Тема обширная, тема интересная, и моя скромная задача состоит в том, чтобы в доступной форме донести до читателя её основы. В этой связи статья будет посвящена не только абстрактным алгебраическим вопросам, но и наполнена богатым геометрическим содержанием. Кроме того, сегодня мы обобщим такое важное понятие как вектор, имеющий к сему содержанию лишь частное отношение.

Есть ли среди вас начинающие изучать высшую математику? …хотя, чего тут спрашивать, конечно же, есть… – не смогли ведь пройти мимо заголовка! …Ну вот вы мне и попались, голубчики =) Для эффективного изучения материала нужно знать основы алгебры, аналитической геометрии, а также уметь выполнять действия с матрицами. На самом деле всё довольно просто, но если у вас возникнут вопросы (или уже встретился какой-то непонятный термин), то, пожалуйста, воспользуйтесь ссылками.

Обобщение понятия вектора. Векторное пространство

Ожидание казни хуже самой казни и поэтому лучше сразу почувствовать леденящий холодок настоящей алгебры =) Начнём с обещанного разбора полётов, а именно с понятия вектора. Давайте вспомним, что мы о нём знаем. Палочка со стрелочкой, знакомая ещё из школы. В высшей математике эта палочка «поднялась» до свободного вектора плоскости и пространства. Хорошо…. Далее слово «вектор» встретилось нам в ходе изучения матриц. Так, например, матрицу «один на два» мы называем вектором-строкой, а матрицу «три на один» – вектором-столбцом. Это векторы? Да, это векторы! Причём эти векторы сами по себе не имеют никакого отношения к геометрии. В своих статьях по алгебре я неоднократно оговаривался, что «данный вектор нужно понимать в алгебраическом смысле» и на уроке о ранге матрицы привёл краткую теоретическую справку по этому поводу: вектор – это упорядоченный набор чисел (обычно действительных)… и далее по тексту. А вот это уже более близко к истине: здесь, скажем, двумерный вектор понимается именно как упорядоченная пара чисел, которую, в частности можно интерпретировать, как координаты геометрического вектора. Или как решение системы линейных уравнений (см., например, статью об однородных системах). Или ещё как-нибудь.

Но и это частность! На самом деле в определённом контексте векторами являются матрицы, многочлены, функции и т.д. …и даже наши «обычные» действительные числа! А почему нет? Пожалуйста: множество векторов (никаких геометрических ассоциаций!), имеющих в наборе одно действительное число .

Так что же такое вектор? Что объединяет все эти случаи?

Предположим, что для всех элементов некоторого множества определены операции их сложения и умножения на скаляр , причём результаты этих операций (полученные элементы) тоже принадлежат данному множеству. Если при этом выполнены следующие восемь аксиом (см. по ссылке), то рассматриваемые элементы называются векторами (никаких ассоциаций!!), а всё их множество – векторным или линейным пространством

Обратите внимание на обозначения: абстрактный вектор чаще всего записывают жирной буквой – чтобы не возникало путаницы с различными «конкретными» векторами. Для векторного пространства стандартно используется буква .

Итак, какие бы «частные семейства» векторов мы ни взяли (геометрические, матричные, строковые и т.д.)для каждой из этих алгебраических структур справедливо следующее:

все элементы рассматриваемого множества можно складывать и умножать на скаляр (далее работаем с действительными числами), причём результаты этих операций тоже принадлежат данному множеству.

– для операций сложения и умножения выполнены аксиомы векторного пространства.

И здесь следует отметить, что термины «сложение» и «умножение» тоже носят общий символический смысл – в зависимости от природы того или иного векторного пространства эти операции определяются по-разному.

В курсе линейной алгебры проводится скрупулезная проверка различных множеств на предмет того, образуют ли они линейное пространство. И если удастся определить сложение и умножение на скаляр медведей на велосипеде и доказать для данных операций выполнение указанных 8 аксиом, то векторами будут и эти объекты =)

А теперь к основной теме урока:

Что такое линейное преобразование?

Если в линейном пространстве каждому вектору по некоторому правилу поставлен в соответствие вектор этого же пространства, то говорят, что в данном пространстве задана векторная функция векторного аргумента: (во избежание разночтений с другими математическими записями скобки нередко опускают: ).

Данная функция называется линейным преобразованием, если для неё выполнены пресловутые свойства линейности, с которыми вы ещё не раз столкнётесь в ходе изучения высшей математики:

,
, где – произвольные векторы данного пространства, а – действительное число.

Линейное преобразование также называют линейным оператором.

Следующий пример оброс не только бородой, но и волосами на спине: рассмотрим линейное пространство векторов-строк вида , в котором определены операция сложения и умножения вектора на число .

Никакой геометрии. – то, что я сформулировал в статье о ранге матрицы, называется
-мерным арифметическим векторным пространством, и сейчас мы имеем дело с частным арифметическим пространством размерности 2.

Докажем, что функция векторного аргумента является линейным преобразованием. Доказательство состоит в проверке свойств линейности:

Здесь мы воспользовались дистрибутивностью умножения на скаляр относительно сложения векторов (одна из аксиом векторного пространства)

А здесь аксиомой ассоциативности умножения на скаляр, коммутативностью (перестановочностью) самих действительных чисел (аксиома поля) и снова той же аксиомой ассоциативности.

Читателям, которым предстоит изучать теорию высшей алгебры, следует привыкнуть к таким доказательствам. Беспощадно формально, но, как сказали бы древние римляне, Dura algebra sed algebra =)

Таким образом, – это линейное преобразование.

Разумеется, далеко не всякий оператор является линейным, и в других источниках информации можно найти массу примеров, как на удачную, так и неудачную проверку различных преобразований на линейность. И со строгостью доказательств на практике обычно всё попроще, …хотя, тут от преподавателя зависит – и по-хорошему, в математике ещё нужно обосновать, почему «ноль не равен единице».

Ну а сейчас мы спускаемся на землю грешную и переходим к геометрическому смыслу линейных преобразований. Пусть – это множество геометрических векторов плоскости. Для простоты рассмотрим привычный ортонормированный базис и прямоугольную систему координат .

Если задан какой-либо базис, то линейное преобразование удобнее представить в матричном виде. Как записать оператор в виде матрицы? На этот счёт существует общее правило: чтобы записать матрицу линейного преобразования в -мерном базисе нужно последовательно и строго по порядку применять данный оператор к базисным векторам, а результаты заносить в столбцы матрицы (слева направо).

Наш случай элементарен: сначала применим линейное преобразование к первому базисному вектору: и запишем результат в 1-й столбец: . Затем «обрабатываем» 2-й орт: и заносим полученные координаты во 2-й столбец:

– матрица линейного преобразования в базисе .

Протестируем построенную матрицу с помощью вектора . Для этого «уложим» его координаты в вектор-столбец и выполним следующее матричное умножение:
– в результате «на выходе» получены координаты вектора , что и требовалось проверить.

Поскольку любая точка плоскости однозначно определяется её радиус-вектором ( – начало координат), то матрица преобразования, по существу, применима и к координатам точек. И далее для простоты я буду говорить, что, например, точка :
– перешла в точку .

Наверное, все уже поняли, что делает этот оператор. Мысленно представьте произвольный треугольник на плоскости. После применения рассматриваемого линейного преобразования данный треугольник увеличится в два раза. Такие треугольники (имеющие равные соответствующие углы), как многие помнят из школы, называются подобными. Да и сам оператор носит такое же название:

Линейное преобразование называется преобразованием подобия или гомотетией, причём:

– если , то речь идёт об однородном растяжении (увеличении) объектов плоскости в раз;
– если – то о сжатии (уменьшении) в раз;
– если , то преобразование тождественно (ничего не меняет).
И если меньше нуля, то дополнительно к растяжению/сжатию/неизменности векторы меняют направление, а точки отображаются симметрично относительно начала координат.

При имеет место так называемое нулевое преобразование.

Следует отметить, что на прикладном и «любительском» уровне линейные преобразования чаще всего как раз и ассоциируются именно с геометрическими преобразованиями. Рассмотрим ещё несколько популярных примеров по теме, и, чтобы разнообразить серые геометрические будни, мысленно нарисуем на координатной плоскости кошачью морду. Можно и не мысленно =)

…Представили? Нарисовали? Отлично!

Преобразование растягивает объекты плоскости по направлению вектора (горизонтали) в 2 раза, после чего кот Леопольд радует нас своей широкой-широкой улыбкой!

…хотя у многих, наверное, не кот… да и не факт, что с улыбкой… – как говорится, у каждого в голове своя морда =)

И в самом деле, преобразуем точку :
– «иксовая» координата увеличилась в 2 раза, а «игрековая» – не изменилась.

Преобразование сожмёт кота по горизонтали в 3 раза. Желающие могут по ходу объяснений приготовить мясорубку тестировать для рассматриваемых матриц различные векторы и точки. Читателям с маломальскими навыками матричного умножения не составит особого труда делать это устно.

Преобразование вытянет все ненулевые объекты плоскости по направлению вектора (по вертикали) в полтора раза. Это будет очень удивлённый кот.

Дополнительные знаки «минус» приведут к зеркальному отображению объектов (относительно оси ординат либо начала координат).

– образно говоря, «челюсть налево, лоб направо». Это преобразование называется перекосом или сдвигом плоскости в направлении вектора (в данном случае).

– данное преобразование поворачивает векторы системы против часовой стрелки на угол .

И, наконец, венчает все эти метаморфозы ещё один лохматый пример:
преобразование переводит единичный квадрат с вершинами в параллелограмм с вершинами .

А тут уж дело случая – может получиться, как комната смеха, так и комната страха – зависит от того или иного преобразования.

Из вышесказанного нетрудно понять, что в базисе любой квадратной матрице «два на два» соответствует некоторое линейное преобразование, и наоборот любому линейному преобразованию соответствует своя матрица «два на два». И данный факт справедлив вообще для любого аффинного базиса , причём одно и то же линейное преобразование в разных базисах будет иметь в общем случае разные матрицы (что следует из самого принципа формирования этих матриц).

По аналогичной схеме можно рассмотреть векторы нашего трёхмерного пространства, с тем отличием, что преобразований будет больше, преобразования будут веселее. И, разумеется, линейные преобразования «работают» в векторных пространствах бОльшей размерности, однако там они уже далеки от геометрии.

В некотором аффинном базисе задано линейное преобразование . Найти образ точки . Используя обратное преобразование, выполнить проверку.

Решение: потихоньку нагружаю вас терминологией: образ – это то, что должно получиться в результате преобразования. В данном случае, очевидно, должна получиться некоторая точка . Исходная точка , соответственно, является прообразом.

! Надеюсь, все понимают, что штрихи в данном контексте не имеют никакого отношения к производным.

Образы векторов и точек мы уже неоднократно находили выше:

Таким образом, линейное преобразование перевело точку в точку .

Теперь найдём матрицу обратного преобразования, которое превращает образы векторов и точек обратно в их прообразы. Для этого запишем простейшее матричное уравнение (где – координатный столбец прообразов, а – образов) и для его разрешения относительно умножим обе части на обратную матрицу слева:

«Развернём» уравнение в привычном порядке:

Обратную матрицу можно найти через алгебраические дополнения либо методом Гаусса-Жордана, но здесь я рекомендую первый способ, поскольку он позволит быстро выяснить, а существует ли матрица вообще.

Заряжаем стандартный алгоритм. Сначала вычислим определитель:
, значит, матрица линейного преобразования обратима. С содержательной точки зрения это означает, что обратное линейное преобразование существует и задаётся оно в точности матрицей .

Здесь и далее я не буду подробно расписывать процесс нахождения обратной матрицы. Итак, в результате стандартных действий находим и выясняем, во что превратится найденная точка :

– получены координаты исходной точки , что и требовалось проверить.

Ответ:

Следует отметить, что обратное преобразование осуществимо далеко не всегда. Так бывает, например, при проектировании векторов на координатные оси или при тривиальном нулевом преобразовании. В таких случаях определитель матрицы прямого оператора равен нулю и обратной матрицы не существует.

Творческая задача для самостоятельного решения:

В результате применения оператора в некотором базисе получены образы . Найти прообразы данных векторов.

Краткое решение и ответ в конце урока. Обратите внимание, что формулировка данной задачи вовсе не утверждает, что речь идёт именно о геометрических векторах. Как оно, собственно, и бывает в большинстве типовых заданий, которые для полного комфорта оформляются малопонятной клинописью:

Даны два линейных преобразования:

Спокойно, спокойно, сейчас во всём разберёмся…

Средствами матричного исчисления найти преобразование, выражающее через .

Решение: и как раз первое, что здесь можно сказать – это отсутствие информации о характере векторов . Известно только, что они заданы в некотором базисе, ибо матрица линейного преобразования НЕ МОЖЕТ существовать без базиса (т.к. она порождается базисными векторами). Сам базис нам тоже не известен, но для решения задачи информация о нём и не нужна.

Тем не менее, для пущего понимания предположим, что все дела происходят в обычной декартовой системе координат . И, чтобы не прослыть живодёром, я рассмотрю 3D-модель кота Леопольда =)

Запишем матрицу левого преобразования: . Данное преобразование переводит векторы в образы . Систему, кстати, удобнее переписать в виде уже знакомого матричного уравнения:
или, если короче: .

Данный оператор определённым образом преобразует все векторы (а значит и точки) пространства. Геометрически это означает, что кот Леопольд, оказывается, например, сплющенным (не знаю, не проверял).

Теперь ВНИМАТЕЛЬНО записываем матрицу второго преобразования: (здесь существует немалый риск поставить ноль не там где нужно). Данное преобразование переводит векторы в образы , в результате чего «сплющенный кот», скажем, растягивается вдоль какой-нибудь плоскости.

Аналогично – запишем преобразование в матричном виде:
или:

По условию, нужно найти результирующее (композиционное) преобразование, которое нам сразу даст «сплющенного и растянутого Леопольда». Подставим в уравнение :

Всё оказалось до безобразия просто – главное, матрицы перемножить в правильном порядке. Вычислим матрицу композиционного преобразования:

Если вы позабыли само матричное умножение, обратитесь к статье Свойства матричных операций, где я подробнейшим образом разобрал этот случай.

Осуществим матричное умножение в правой части:

Две матрицы равны, если равны их соответствующие элементы. Таким образом, итоговое преобразование, выражающее координаты векторов-образов через координаты векторов-прообразов, запишется в виде следующей системы:

Выполним проверку. Для этого подставим уравнения , левой системы (см. условие) в правую часть каждого уравнения 2-й системы:

Что и требовалось проверить.

Этот способ, кстати, можно было бы рискнуть взять и за основой, если бы итоговое преобразование не требовалось найти средствами матричного исчисления

Ответ:

Как пользоваться этой системой? Очень просто – берём например, вектор и тупо подставляем его координаты:
– таким образом, он превратился в вектор .

Более академичный способ – использование матричного уравнения .

Энтузиасты могут смоделировать деформацию кота Леопольда с помощью специализированного программного обеспечения и отправить мне картинку, которую я обязательно опубликую. Мне и самому интересно, что же там с ним на самом деле произошло =)

В том случае, если нужно «вернуть кота к первоначальному виду», следует найти обратную матрицу результирующего преобразования и воспользоваться уравнением .

«Плоский» случай для самостоятельного решения:

Даны два линейных преобразования в некотором базисе:

Найти образ вектора двумя способами:

1) путём последовательного применения преобразований и ;
2) с помощью композиционного оператора, выражающего координаты через .

Был велик соблазн вас запутать, но всё же я воздержался. Однако на практике нужно иметь в виду следующее:

– системы запросто могут быть переставлены местами;

– условие задачи может требовать выразить через и тогда потребуется дополнительно находить обратную матрицу результирующего преобразования;

В этой связи очень важно РАЗОБРАТЬСЯ в сути задания, и если что-то осталось недопонятым, обязательно перечитайте объяснения ещё раз – не лишним будет даже порисовать.

А сейчас переходим к вопросу, который назревал в течение всего урока:

Матрица линейного преобразования в различных базисах

В начале статьи мы выяснили происхождение матрицы линейного преобразования на примере оператора и ортонормированного базиса . Напоминаю: для того, чтобы записать матрицу линейного оператора в каком-либо базисе, нужно строго по порядку подействовать этим оператором на базисные векторы и полученные координаты занести в столбцы матрицы (слева направо). В результате «обработки» векторов нами была составлена матрица данного линейного преобразования в данном базисе.

Но ведь на «школьном» базисе свет клином не сошёлся! Ничто нам не мешает перейти к произвольному базису , где это же линейное преобразование, очевидно, выразится другой матрицей. Но сам-то оператор не изменится – он будет по-прежнему увеличивать векторы плоскости в 2 раза. Таким образом, справедливо следующее утверждение, которое по существу уже было озвучено ранее:

Одно и то же линейное преобразование в разных базисах в общем случае имеет РАЗНЫЕ матрицы.

И следующие две задачи как раз посвящены этому вопросу:

В базисе задано линейное преобразование . Найти матрицу данного преобразования в базисе , если

Решение: в условии задачи опять ничего не сказано о характере векторов, но для наглядности предположим, что данные базисы являются аффинным базисами плоскости. Как заметили внимательные читатели, предложенное линейное преобразование вытягивает все ненулевые объекты плоскости в направлении координатного вектора в 2 раза, и наша задача состоит в том, чтобы записать матрицу этого же преобразования в новом базисе . Для решения этого вопроса существует специальная формула:

, где – матрица перехода от базиса к базису .

Составляется она просто: берём вектор и «укладываем» коэффициенты его разложения (внимание!) в 1-й столбец матрицы: . Затем рассматриваем вектор и заносим коэффициенты его разложения во 2-й столбец:

Внимание! Базисные векторы, в данном случае векторы , следует «перебирать» строго по порядку!

Остальное дело техники. Находим обратную матрицу:

И, наконец, матрицу рассматриваемого линейного преобразования в новом базисе:

Пользуясь ассоциативностью матричного умножения, можно было сначала найти , а затем , но, в общем-то, это уже несущественные детали.

Ответ:

Ещё раз повторим смысл задания: само линейное преобразование не поменялось – оно по-прежнему растягивает ненулевые объекты плоскости вдоль «старого» вектора в 2 раза и не деформирует их в направлении вектора , но в новом базисе матрица данного преобразования уже другая. И вы видите её в ответе.

Очевидно, что найденная матрица задаёт обратное преобразование, т.е. выражает старые базисные векторы через новые. Аккуратно «транспонируем» столбцы матрицы в коэффициенты соответствующей системы: . Таким образом, при желании всегда можно вернуться к старому базису: . Обратная формула следует из простых логических соображений, но её можно вывести и формально – разрешив матричное уравнение относительно .

Иногда матрицы и называют подобными.

Какой базис удобнее? Конечно же, исходный, который задаётся матрицей – он сразу позволяет выяснить характер линейного преобразования. И что это за такой интересный базис, и как получить эту матрицу другим способом, вы узнаете на уроке о собственных векторах.

Трехмерный случай для самостоятельного решения:

Найти матрицу линейного преобразования в базисе , где , , , если она задана в базисе .

Пожалуйста, не путайте это задание с Примером № 3 – по первой оглядке здесь тоже какие-то похожие равенства, тоже штрихи, но смысл совершено другой. Если там шла речь о двух линейных преобразованиях и взаимосвязи координат векторов, то здесь – об одном и том же преобразовании и взаимосвязи векторов двух базисов.

Краткое решение и ответ совсем рядом.

И в завершении урока вернёмся к двумерному случаю и матрицам «два на два». Казалось бы, с геометрической точки зрения эти матрицы задают линейные преобразования плоскости и разговор закончен. Но на самом деле это не так – у матриц есть и другой геометрический смысл, с которым можно ознакомиться на уроке Переход к новому базису. Сначала я хотел включить пару соответствующих примеров в эту статью, но чуть позже решил, что материал будет уместнее опубликовать в разделе аналитической геометрии.

Ну и конечно, не забываем, что рассматриваемый материал касается не только геометрических векторов плоскости и пространства, но и вообще любых векторов.

Спасибо за внимание, жду вас на следующем, не менее увлекательном уроке о собственных числах и собственных векторах линейного преобразования.

Решения и ответы:

Пример 2: Решение: найдём матрицу обратного преобразования:
(см. урок. Как найти обратную матрицу)
Найдём прообразы:

Ответ:

Пример 4: Решение: запишем матрицы преобразований:

1) Последовательно применим к вектору преобразования и :

2) Найдём результирующее преобразование:

Таким образом:

Ответ: (нулевой вектор)

Пример 6: Решение: Решение: Используем формулу . Запишем матрицу перехода к новому базису:

Найдём матрицу обратного перехода:

Вычислим:

Ответ:

Автор: Емелин Александр

(Переход на главную страницу)

«Всё сдал!» — онлайн-сервис помощи студентам

Zaochnik.com – профессиональная помощь студентам,

cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys

Линейные преобразования

Линейные преобразования. Собственные векторы и собственные числа линейного оператора

Линейные преобразования (линейные операторы). Матрица линейного преобразования Линейные преобразования

Пусть задано Линейные преобразования-мерный пространство Линейные преобразования. Если каждому вектору Линейные преобразованияпоставлено в соответствие единственный вектор

Линейные преобразования

этого же пространства, говорится, что в векторном пространстве Линейные преобразованиязадано преобразование Линейные преобразования, или оператор Линейные преобразования.

Вектор Линейные преобразования— результат линейного преобразования — называют образом вектора Линейные преобразования, а выходной вектор Линейные преобразованияпрообразом вектора Линейные преобразования.

Преобразование Линейные преобразованияназывается линейным преобразованием, или линейным оператором, если для произвольных векторов Линейные преобразованияи произвольного действительного скаляра Линейные преобразованиявыполняются условия:

Линейные преобразования

То есть линейный оператор преобразует пространство Линейные преобразованияв то самое пространство. Это записывается следующим образом:

Линейные преобразования

Примерами простейших линейных преобразований являются:
тождественное преобразование: Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в самого себя, то есть остается без изменения;

нулевой оператор Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в ноль-вектор этого же пространства, то есть Линейные преобразования

Линейное преобразование Линейные преобразования, с помощью которого осуществляется восстановление вектора Линейные преобразованияпо его образу Линейные преобразования, называется обратным к Линейные преобразованиялинейным преобразованием. В отличие от матрицы оператор записывают Линейные преобразованиякаллиграфическим Линейные преобразованияшрифтом.

Рассмотрим задачу об отыскании координат образа вектора Линейные преобразования.

Пусть в пространстве Линейные преобразованиявыбрано базис Линейные преобразования(не обязательно ортонормированный) и Линейные преобразованияесть координатами вектора Линейные преобразованияв этом базисе. Обозначим через Линейные преобразованиякоординаты вектора Линейные преобразованияв выбранном базисе. по условию Линейные преобразования, тогда согласно линейностью оператора Линейные преобразованияполучим :

Линейные преобразования

Но образы Линейные преобразованиятоже являются векторами с Линейные преобразования, поэтому иx можно разложить по тому же базисом. Пусть

Линейные преобразования

где Линейные преобразованиякоэффициенты разложения вектора Линейные преобразованияпо базису Линейные преобразования

С учетом (5.5) соотношение (5.4) принимает вид:

Линейные преобразования

Группируя члены правой части относительно векторов базиса, имеем:

Линейные преобразования

С другой стороны, если Линейные преобразованияявляются координатами вектора Линейные преобразованияв базисе Линейные преобразованиято его можно представить следующим образом:

Линейные преобразования

Сопоставляем (5.8) из (5.7) и получаем координаты вектора Линейные преобразования:

Линейные преобразования

Следовательно, при линейном преобразовании:

Линейные преобразования

координаты образа вектора являются линейными комбинациями координат прообраза, коэффициенты при которых составляют матрицу Линейные преобразования-го порядка (обозначим ее через Линейные преобразования):

Линейные преобразования

Матрица Линейные преобразования, которая в произведении (слева) с вектором с Линейные преобразованияопределяет координаты его образа при линейном преобразовании Линейные преобразования, Называется матрицей линейного преобразования Линейные преобразованияв базисе Линейные преобразованияи пишут:

Линейные преобразования

Каждый — Линейные преобразования-й — столбец матрицы Линейные преобразованиясоставляют коэффициенты разложения вектора Линейные преобразованияпо базису Линейные преобразованиякаждая — Линейные преобразования-я — строка определяет коэффициенты разложения координат вектора Линейные преобразованияпо координатам вектора Линейные преобразования.

Обратите внимание, что Линейные преобразования— нераздельный символ (обозначение вектораобраза), а Линейные преобразования— произведение матрицы с вектором (прообразом).

Каждому линейном оператору Линейные преобразования-мерного пространства отвечает матрица Линейные преобразования-го порядка в данном базисе. И наоборот, каждой матрицы Линейные преобразования-го порядка отвечает линейный оператор Линейные преобразования-мерного пространства с определенным базисом.

Например, с помощью оператора линейных преобразований можно описать поворот произвольного вектора с пространства Линейные преобразованиявокруг начала координат на угол Линейные преобразованияпротив часовой стрелки. Формулы поворота осей координат (формулы перехода от исходных координат Линейные преобразованияи Линейные преобразованияк новым Линейные преобразованияи Линейные преобразования, и наоборот ) определяют алгебраическую форму изображения линейного оператора поворота осей:

Линейные преобразования

где Линейные преобразованияоператор перехода от исходных (новых) координат к новым (исходных);

Линейные преобразованиявекторы, началом которых является точка Линейные преобразования, а концами —
точки Линейные преобразованияи Линейные преобразования, соответственно.

По соотношению (5.12) матрица линейного преобразования> Линейные преобразования, Описывающий поворот произвольного вектора из пространства Линейные преобразованиявокруг начала координат на угол Линейные преобразованияпротив часовой стрелки, имеет вид:

Линейные преобразования

а матрица обратного линейного преобразования Линейные преобразования, то есть такого, что описывает поворот произвольного вектора из пространства Линейные преобразованиявокруг начала координат на угол Линейные преобразованияпо часовой стрелке, имеет вид:

Линейные преобразования

Теорема 5.1 (о связи между матрицами оператора в различных базисах).

Матрицы Линейные преобразованияи Линейные преобразованиялинейного оператора Линейные преобразованияв разных базисах Линейные преобразованияи Линейные преобразованиясвязаны между собой соотношением:

Линейные преобразования

где Линейные преобразованияматрица перехода от исходного к новому базису.

Доказательство. Пусть линейный оператор Линейные преобразованияпревращает вектор Линейные преобразованияпространства Линейные преобразованияв вектор Линейные преобразованиятого самого пространства. Тогда в матричной форме связь между вектором Линейные преобразованияи его образом Линейные преобразованияв исходном базисе можно записать как Линейные преобразования, а в новом — как Линейные преобразования. Поскольку Линейные преобразованияявляется матрицей перехода от исходного базиса к новому, то в соответствии с (4.18) имеем:

Линейные преобразования

Умножим равенство (5.14) слева на матрицу Линейные преобразованияи получим Линейные преобразования. Отсюда по определению линейного оператора имеем: Линейные преобразования. С учетом (5.15):

Линейные преобразования

Сравнив соотношение Линейные преобразованияи Линейные преобразования, получаем Линейные преобразования

Две квадратные матрицы Линейные преобразованияи Линейные преобразованияназываются подобными, если существует такая невырожденная матрица Линейные преобразования, матрицы Линейные преобразованияи Линейные преобразованиясвязанные соотношениями:

Линейные преобразования

Соответствующие линейные операторы называются преобразованиями сходства.

Подобные матрицы описывают то же линейное преобразование, но в разных базисах, а матрица Линейные преобразованияявляется матрицей перехода от одного базиса к другому.

Подобные матрицы имеют те же ранги, суммы элементов главной диагонали и определители.

В базисе Линейные преобразованияи Линейные преобразованиязадана матрица линейного оператора Линейные преобразования:

Линейные преобразования

Определим матрицу Линейные преобразования, которая отвечает том же оператору в базисе векторов Линейные преобразованияи Линейные преобразованияесть матрица Линейные преобразованияподобна матрице Линейные преобразования.

Предоставим расписание векторов нового базиса по векторам исходного базиса: Линейные преобразования. Соответственно, матрица перехода от исходного к новому базису имеет вид:

Линейные преобразования

Ее определитель Линейные преобразования, то есть матрица Линейные преобразованияневырожденная и имеет обратную:

Линейные преобразования

По теореме 5.1 определяем матрицу оператора Линейные преобразованияв новом базисе:

Линейные преобразования

Обратите внимание, что в новом базисе матрица оператора Линейные преобразованияоказалась диагональной.

Собственные векторы и собственные числа линейного оператора: определение, свойства

Рассмотрим Линейные преобразования-мерных линейный пространство Линейные преобразованияс определенным базисом и матрицу Линейные преобразования, некоторого линейного оператора Линейные преобразованияпространства.

Ненулевой вектор Линейные преобразованияназывают собственным, или характеристическим вектором линейного оператора Линейные преобразования(или матрицы Линейные преобразования), если существует такое действительное число Линейные преобразования, имеет место равенство:

Линейные преобразования

Скаляр Линейные преобразованияназывается собственным, или характеристическим, числом матрицы Линейные преобразования, или ее собственным значением, соответствует собственному вектору Линейные преобразования:

Согласно определениями собственного числа и собственного вектора имеем:

1) Если Линейные преобразования, то каждый ненулевой вектор из Линейные преобразованияявляется собственным вектором матрицы Линейные преобразования, при этом Линейные преобразования, ведь по свойству единичной матрицы имеем Линейные преобразования;
2) любой ненулевой Линейные преобразования-мерный вектор является собственным вектором нулевой матрицы Линейные преобразования, при этом Линейные преобразования, так как Линейные преобразования.

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы Линейные преобразования

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы

Линейные преобразования

Линейные преобразования

Линейные преобразования

Запишем матричное уравнение (5.17) в развернутом виде:Линейные преобразования

Таким образом, задача сводится к решению однородной системы Линейные преобразованиялинейных уравнений с Линейные преобразованиянеизвестными. Нас интересуют (по определению собственного вектора) только ненулевые векторы, то есть нетривиальные решения системы, поэтому определитель системы (5.18) должен быть равен нулю:

Линейные преобразования

Раскрытие определителя в соотношении (5.19) дает многочлен степени Линейные преобразованияотносительно Линейные преобразования, который называется характеристическим многочленом матрицы Линейные преобразования, а соотношение (5.19), которое можно представить в виде Линейные преобразования, определяет уравнение для нахождения собственных чисел, которое называют характеристическим уравнением матрицы Линейные преобразования.

По основной теореме алгебры уравнения Линейные преобразованиялюбой матрицы Линейные преобразованияимеет Линейные преобразованиякорней, если каждый из них считать столько раз, какова его кратность. Характеристическое уравнение матрицы может иметь только действительные, но и комплексные корни, то есть числа вида Линейные преобразованиягде Линейные преобразованиядействительные числа, Линейные преобразованиямнимая единица.

Множество всех собственных чисел матрицы называют спектром матрицы. Если в спектре матрицы то же собственное число повторяется Линейные преобразованияраз, то говорят, что кратность этого собственного числа равна Линейные преобразования.

Теорема 5.2 (о единственности собственного чucлa, что соответствует собственному вектору). Если Линейные преобразования— собственный вектор матрицы Линейные преобразования, то существует единственный скаляр Линейные преобразования, который удовлетворяет условие Линейные преобразования.

Доказательство. Предположим, что кроме собственного числа Линейные преобразованиясуществует еще один
скаляр Линейные преобразования, такой, что Линейные преобразования. Тогда должно выполняться равенство Линейные преобразования. Поскольку по определению собственный вектор является ненулевым, то есть Линейные преобразования, получим Линейные преобразования.

Согласно теореме 5.2 говорят, что собственный вектор Линейные преобразованияиз матрицы Линейные преобразованияпринадлежит собственному числу Линейные преобразования.

Теорема 5.3 (о множестве собственных векторов, принадлежащих собственному числу). Если матрица имеет собственный вектор, принадлежащий собственному числу Линейные преобразования, то таких векторов бесконечно много.

Доказательство базируется на определении собственного вектора и свойствах ассоциативности и коммутативности операции умножения матрицы на скаляр.

Действительно, пусть Линейные преобразованиясобственный вектор матрицы Линейные преобразования, тогда Линейные преобразования. Привлечем к рассмотрению вектор Линейные преобразования, коллинеарный вектору Линейные преобразования, то есть Линейные преобразования, где Линейные преобразования, и покажем, что в также является собственным вектором матрицы Линейные преобразования:

Линейные преобразования

Поскольку равенство (5.19) выполняется для произвольного Линейные преобразования, то существует множество собственных векторов, принадлежащих данному собственному числу.

Теорема 5.4 (критерий существования собственного вектора Линейные преобразования, соответствующего собственному числу Линейные преобразования). Вектор Линейные преобразованиятогда и только тогда является собственным вектором матрицы Линейные преобразования, соответствующим собственному числу Линейные преобразования, когда его координаты Линейные преобразованияобразуют ненулевое решение однородной квадратной системы линейных алгебраических уравнений Линейные преобразования

Линейные преобразованияили Линейные преобразования

Доказательство сводится к тождественных преобразований матричных уравнений.

Необходимость уже доказано переходом от соотношения Линейные преобразования, к однородной системе линейных уравнений Линейные преобразования, представленной в развернутом виде (5 18).

Достаточность. На основании свойств действий над матрицами с учетом условия Линейные преобразования, осуществит переход от однородной системы уравнений в матричной форме с соотношением Линейные преобразования:

Линейные преобразования

Теорема 5.5 (пpo линейную независимость собственных векторов). Собственные векторы, принадлежащие различным собственным числам, является линейно независимыми.

Доказательство проведем методом от противного. Пусть Линейные преобразованиядва произвольные собственные векторы, принадлежащие соответственно собственным числам Линейные преобразованияи Линейные преобразованияЛинейные преобразования. Необходимо показать, что линейная комбинация этих собственных векторов Линейные преобразованияноль-вектор только тогда, когда Линейные преобразования, то есть

Линейные преобразования

Предположим обратное. Пусть (5.23) выполняется при условии, что одно из чисел Линейные преобразованияне является нулем, например, Линейные преобразования

Умножим левую и правую части (5.23) на собственное число Линейные преобразования. Тогда

Линейные преобразования

Левую и правую части равенства (5.23) умножим на матрицу Линейные преобразованияслева, и, учитывая свойства операций над матрицами, получим:

Линейные преобразования

Сравним (5.25) и (5.24). Получаем:

Линейные преобразования

По условию теоремы Линейные преобразования. По определению вектор Линейные преобразованияявляется ненулевым, поэтому равенство (5.26) возможно только при Линейные преобразования, то есть предположение о линейной зависимости векторов Линейные преобразованияи Линейные преобразованияошибочно.

Если есть более двух собственных векторов, принадлежащих попарно различным собственным числам, доведение аналогичное (с использованием метода математической индукции).

Заметим, что собственные векторы, принадлежащих различным собственным числам, можно использовать как базисные векторы пространства Линейные преобразования.

Теорема 5.6 (пpo сумму и произведение собственных чисел). Если Линейные преобразованиясобственные числа матрицы Линейные преобразования, то:
1) сумма собственных чисел равна сумме элементов главной диагонали матрицы Линейные преобразования:

Линейные преобразования

2) произведение собственных чисел равна определителю матрицы Линейные преобразования:

Линейные преобразования

Доказательство основывается на формулах Виета, которые описывают соотношение между корнями и коэффициентами многочлена Линейные преобразования-гo степени в случае, когда его старший коэффициент равен единице.

Рассмотрим простейший случай Линейные преобразования. Запишем характеристическое уравнение в развернутом виде:

Линейные преобразования

С (5.29) по теореме Виета (для квадратного уравнения) имеем:

Линейные преобразования

Сумму всех диагональных элементов матрицы называют следом (от нем. spur — след) этой матрицы и обозначают Линейные преобразования.

Для квадратной матрицы произвольного порядка Линейные преобразованиятеорему 5.6 в символьном виде можно записать так:

Линейные преобразования

при этом собственное число Линейные преобразованияберем столько раз, какова его кратность как корня характеристического уравнения (5.29).

Нахождение собственных чисел и собственных векторов

Рассмотрим алгоритм нахождения собственных чисел матрицы Линейные преобразованияи собственных векторов, которые им принадлежат.
Согласно соотношениями (5.18) и (5.19) имеем такой порядок отыскания собственных чисел и собственных векторов матрицы.
1. Составляем по исходной матрицей Линейные преобразованияхарактеристическое уравнение (5.18) и решаем его, то есть находим спектр собственных чисел.
2. Подставляем поочередно каждое собственное число в систему (5.18) и находим все ее нетривиальные решения, что и дает множество собственных векторов, принадлежащих соответствующему собственному числу.

Замечания. Множество всех собственных векторов, принадлежащих определенному собственному числу, можно представить как линейную комбинацию фундаментальных решений однородной системы уравнений согласно (4.19), гл. 4.

Найдем собственные числа и собственные векторы матрицы

Линейные преобразования

Характерным уравнением этой матрицы является квадратное уравнение:

Линейные преобразования

Решив его, получим собственные числа Линейные преобразованияи Линейные преобразования

Теперь описываем множества Линейные преобразованияи Линейные преобразованиявсех собственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразованиявместо Линейные преобразованияподставим поочередно значения собственных чисел, запишем соответствующую систему однородных линейных уравнений (5.18) и решим ее:

Линейные преобразования

Предоставляя параметру Линейные преобразованияпроизвольных значений, для данного собственного числа Линейные преобразованияполучим совокупность коллинеарных между собой собственных векторов.

Теорема 5.7 (про собственные числа и собственные векторы симметричной матрицы).

Симметричная матрица Линейные преобразованияимеет только действительные собственные числа. Собственные векторы, принадлежащие разным собственным числам, ортогональны и линейно независимы.

Теорема приводим без доказательства.
Проиллюстрируем прав выводов данной теоремы на примере.

Пусть имеем симметричную матрицу
Линейные преобразования

Найдем собственные числа и собственные векторы этой матрицы и докажем ортогональность собственных векторов, соответствующих различным собственным числам.

1. Составим характеристическое уравнение матрицы

Линейные преобразования

2. Найдем корни полученного кубического уравнения относительно Линейные преобразования. С элементарной алгебры известно, если многочлен со старшим коэффициентом, равным единице, имеет целые корни, то их следует искать среди делителей свободного члена. Перебирая делители числа 36, убеждаемся, что Линейные преобразованияявляется корнем уравнения (5.30).

Нахождение других двух корней сводится к решению квадратного уравнения:

Линейные преобразования

3. Опишем множества Линейные преобразованияи Линейные преобразованиясобственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразованиявместо Линейные преобразованияподставляем поочередно значения собственных чисел, записываем соответствующую систему однородных линейных уравнений (5.17) и решаем ее методом Жордана-Гаусса:

Линейные преобразования

Аналогично находим собственные векторы Линейные преобразованияи Линейные преобразования

Линейные преобразования

Система векторов Линейные преобразованияи Линейные преобразованияявляется линейно независимой, поскольку

Линейные преобразования

Убеждаемся, что векторы Линейные преобразованияи Линейные преобразования— попарно ортогональны.
Для этого определим их скалярные произведения:

Линейные преобразования

Поскольку скалярные произведения векторов равны нулю, то векторы попарно ортогональны.
Если в выражениях (5.31-5.33) положить Линейные преобразования, то получим систему векторов:

Линейные преобразования

которая использовалась как базис пространства Линейные преобразованияв примере после теоремы Линейные преобразованияЛинейные преобразованияи Линейные преобразования. В таком базисе, то есть базисе из собственных векторов, матрица оператора Линейные преобразованияоказалась диагональной, ее ненулевыми элементами являются собственные числа матрицы Линейные преобразования.

Теорема 5.8 (о преобразовании матрицы к диагональному виду). Матрица линейного оператора Линейные преобразованияв базисе Линейные преобразованияимеет диагональный вид тогда и только тогда, когда все векторы базиса являются собственными векторами матрицы Линейные преобразования.
Теорему наводим без доказательств

Заметим, что при нахождении собственных чисел для заданной матрицы самой задачей является решение алгебраического уравнения Линейные преобразования-й степени, что во многих случаях сделать невозможно без использования приближенных методов. Изучение приближенных методов выходит за пределы программы. Поэтому предлагаем воспользоваться известными программами MatLab, MathCad, Maple и др.

Следующий пример был решен в пакете MatLab, в котором конечный результат вычислений предоставляется без промежуточных выкладок.
Найдем собственные числа и соответствующие им собственные векторы матрицы

Линейные преобразования

Характерным уравнением для нахождения собственных чисел является уравнение

Линейные преобразования

корнями которого будут числа Линейные преобразованияа соответствующие им собственные векторы имеют вид:

Линейные преобразования

Собственные числа и собственные векторы матриц имеют широкий спектр использования, в частности, в аналитической геометрии (Раздел 2), в задачах различных отраслей естественных наук и эконометрики.

Базис пространства из собственных векторов линейного оператора

По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Возникает вопрос, при каких условиях существует базис линейного пространства Линейные преобразования, построенный из собственных векторов матрицы.
Лема. Если Линейные преобразованияявляется собственным числом матрицы Линейные преобразования, то множество собственных векторов матрицы Линейные преобразованиясодержит Линейные преобразованиялинейно независимых векторов, где Линейные преобразования— ранг матрицы Линейные преобразования.

Доказательство. Согласно теореме 5.4 множество собственных векторов совпадает с множеством всех решений однородной системы линейных уравнений:

Линейные преобразования

где Линейные преобразования— собственный вектор матрицы Линейные преобразования, что соответствует собственному числу Линейные преобразования. По теореме 4.4 такая система имеет фундаментальную систему решений, количество векторов которой равна Линейные преобразования, то есть содержит Линейные преобразования— линейно независимых векторов.

Теорема 5.9 (о существовании базиса из собственных векторов матрицы). Пусть числа Линейные преобразованияобразуют множество всех различных собственных чисел матрицы Линейные преобразования. Если сумма рангов матриц Линейные преобразованияравна Линейные преобразования, то в пространстве Линейные преобразованиясуществует базис из собственных векторов матрицы Линейные преобразования.

Доказательство. Согласно лемме каждое множество собственных векторов, соответствующих уравнению Линейные преобразования, содержит независимые векторы в количестве Линейные преобразования. По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Тогда для матрицы Линейные преобразованияобщее количество линейно независимых собственных векторов составляет:

Линейные преобразования

Поскольку собственные векторы матрицы Линейные преобразованияв совокупности составляют систему Линейные преобразованиялинейно независимых векторов, то они образуют базис пространства Линейные преобразования.

Теорема 5.10 (о существовании базиса из собственных векторов симметричной матрицы). Если матрица Линейные преобразованиялинейного оператора симметрична, то в пространстве Линейные преобразованиясуществует базис, образованный из собственных векторов матрицы Линейные преобразования.

Теорему принимаем без доказательств.
Построим ортонормированный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы

Линейные преобразования

линейного преобразования Линейные преобразования, и найдем матрицу Линейные преобразованиязаданного преобразования в этом базисе.

Согласно теореме 5.9 такой базис существует, поскольку матрица Линейные преобразованияявляется симметричной матрицей. Составим характеристическое уравнение матрицы Линейные преобразования:

Линейные преобразования

и решим его: Линейные преобразования(собственное значение кратности Линейные преобразования) и Линейные преобразования

Для каждого из двух различных собственных чисел матрицы определим фундаментальную систему решений однородной системы уравнений: Линейные преобразования. При Линейные преобразованияв результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последним шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Определяем фундаментальную систему решений однородной системы уравнений Линейные преобразования

Линейные преобразования

Собственные векторы Линейные преобразованияи Линейные преобразованияявляются ортогональными, поскольку их скалярное произведение равно нулю: Линейные преобразования

При Линейные преобразованияв результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последнем шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Возлагаем Линейные преобразованияи получаем фундаментальный решение однородной системы уравнений Линейные преобразования

Линейные преобразования

Поскольку Линейные преобразованияи Линейные преобразования, то все три вектора попарно ортогональны. Объединив полученные фундаментальные системы решений, иметь систему собственных векторов матрицы Линейные преобразования. Они образуют ортогональный базис пространства Линейные преобразования. После нормирования векторы приобретают вид:

Линейные преобразования

Это и есть ортогональный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы Линейные преобразования.

По соотношению (5.13) определим матрицу Линейные преобразования, что соответствует оператору Линейные преобразованияв базисе из собственных векторов. Согласно теореме 5.8 эта матрица будет иметь диагональный вид, а элементами ее главной диагонали будут собственные числа этой матрицы. Заключим с собственными векторами Линейные преобразования, Линейные преобразованияи Линейные преобразованияматрицу Линейные преобразованияперехода к новому базису и найдем обратную к ней матрицу Линейные преобразования:

Линейные преобразования

По матричным уравнением (5.13) находим матрицу Линейные преобразования, что соответствует оператору Линейные преобразованияв базисе из собственных векторов:

Линейные преобразования

Следовательно, мы получили диагональную матрицу третьего порядка, элементами главной диагонали которой есть собственные числа матрицы Линейные преобразования.

Далее приведен пример применения собственных векторов и собственных чисел в одной из многих задач экономики.

Линейная модель обмена (модель международной торговли)

Практически все страны кроме внутреннего товарообмена осуществляют внешний товарообмен, то есть занимаются внешней торговлей. Торговля считается сбалансированной, или бездефицитной, если для каждой страны прибыль от торговли не меньше объем средств, которые она вкладывает в товарооборот (внутренний и внешний).

Постановка задачи. Несколько стран осуществляют взаимный товарообмен. Известную долю бюджетных средств, тратит каждая страна на закупку товаров у другой страны, учитывая и внутренний товарооборот. Определить, каким должно быть соотношение бюджетов партнеров для того, чтобы обеспечить бездефицитность торговли.

Построение математической модели. Введем обозначения количественных характеристик, описывающих торговлю между странами, и определим связь между этими характеристиками. Пусть Линейные преобразования— страны, участвующие в международной торговле. Доли средств, которые тратит страна Линейные преобразованияна закупку товаров в стране Линейные преобразования, учитывая и внутренний товарооборот Линейные преобразования, обозначим через Линейные преобразования. Понятно, что

Линейные преобразования

Матрицу Линейные преобразования, элементами которой являются числа Линейные преобразования, называют структурной матрицей торговли:

Линейные преобразования

Эта матрица описывает взаимодействие стран в процессе международной торговли. Соотношение (5.34) означает, что сумма элементов каждого столбца матрицы равна
1. Если объем средств, которые тратит каждая страна на торговлю, обозначить через Линейные преобразования, соответственно, то прибыль Линейные преобразованиястраны Линейные преобразованияот внутренней и внешней торговли составит

Линейные преобразования

Чтобы торговля каждой страны была сбалансированной, по определению должно выполняться условие Линейные преобразования, и Линейные преобразования, то есть прибыль от торговли не должна быть меньше расходов. Однако соблюдение этого требования в виде неравенства невозможно для всех стран в совокупности. Действительно, добавим левые и правые части указанных неровностей, изменяя Линейные преобразованияот единицы до Линейные преобразования:

Линейные преобразования

Группируя в левой части слагаемые, содержащие каждое из Линейные преобразования, получим:

Линейные преобразования

Учитывая соотношение (5.20), получим:

Линейные преобразования

Отсюда следует, что сбалансированная торговля возможна только в случае знака равенства. Это, полагаем, понятно не только на основании аналитических выкладок, но и с экономической точки зрения (и даже просто с точки зрения здравого смысла): все страны в совокупности не могут получить прибыль. Более того, для одной из стран не может выполняться знак строгого неравенства Линейные преобразования.

Итак, условием сбалансированной торговли является равенства Линейные преобразования, и Линейные преобразования, из которых получим:

Линейные преобразования

Введем в рассмотрение вектор (бюджетных) средств Линейные преобразованияи подадим систему (5.39) в матричной форме:

Линейные преобразования

С (5.40) следует, что при условии сбалансированности торговли между странами вектор средств Линейные преобразованиядолжен быть собственным вектором структурной матрицы торговли Линейные преобразования, который принадлежит собственному числу Линейные преобразования. Таким образом, решение задачи сводится к нахождению этого собственного вектора Линейные преобразования, компоненты которого устанавливают соотношение между бюджетами стран, участвующих в товарообмене.

Рассмотрим товарообмен между тремя странами. Пусть структурная матрица торговли стран Линейные преобразования, имеет вид:

Линейные преобразования

Найдем вектор средств, компонентами которого являются доли от общего объема торговли, должна вкладывать каждая из стран во внешней товарооборот для того, чтобы торговля была сбалансированной.

Искомый вектор средств является собственным вектором структурной матрицы, принадлежащий собственному значению Линейные преобразования. Его компоненты образуют ненулевое решение однородной СЛАУ:

Линейные преобразования

Поскольку система является однородной, то расширенная матрица эквивалентна основной матрицы системы. Осуществим элементарные преобразования основной матрицы этой системы уравнений:

Линейные преобразования

Находим общее решение системы, в котором Линейные преобразования— базисные переменные, Линейные преобразования— свободная переменная:

Линейные преобразования

Отсюда следует, что для сбалансированности торговли необходимо, чтобы средства, которые вкладывает в внешний товарооборот каждая страна, соотносились как Линейные преобразования

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Построение матрицы линейного оператора

Построение матрицы по заданной формуле отображения.

Пусть отображение задано с помощью формулы:

то есть для координат произвольного исходного вектора определены координаты его образа. Тогда, рассматривая вместо произвольного вектора x вектор , найдём его образ, это будет вектор . Для этого в формуле, задающей образ вектора, полагаем , ,…, . Аналогично находим образы для ,…, . Из координат образа вектора составляем 1-й столбец матрицы линейного оператора, аналогично из координат последующих векторов – остальные столбцы. Рассмотрим на примере.

Пример 1. Пусть оператор задан с помощью формулы:

Прежде всего, докажем, что это отображение – действительно линейный оператор.

Отобразим сумму векторов:

Теперь каждую координату получившегося вектора можем преобразовать:

Аналогично для умножения на константу:

Для того чтобы найти матрицу этого линейного оператора, нужно, как было сказано выше, подставить значения x1 = 1, x2 = 0, а затем x1 = 0, x2 = 1. В этом примере образы базисных векторов – соответственно (3, 1) и (2, -1).

Поэтому матрица линейного оператора будет иметь вид:

Аналогичным способом решается задача и для 3 и большего количества переменных.

Пример 2. .

Построим матрицу оператора. Отображая вектор (1,0,0), получаем (1,4,-1), соответственно (0,1,0) переходит в (2,1,-2), а вектор (0,0,1) – в (-1,1,3).

Матрица линейного оператора:

2.2. Построение матрицы оператора в случае, когда известен исходный базис и система векторов, в которую он отображается.

Если задана система из n векторов, образующих базис, и какая-нибудь произвольная система n векторов (возможно, линейно-зависимая), то однозначно определён линейный оператор, отображающий каждый вектор первой системы в соответствующий вектор второй системы.

Матрицу этого оператора можно найти двумя способами: с помощью обратной матрицы и с помощью системы уравнений.

Пусть — матрица оператора в базисе . По условию, для всех индексов . Данные n равенств можно записать в виде одного матричного равенства: , при этом столбцы матрицы — это векторы , а столбцы матрицы — векторы . Тогда матрица может быть найдена в виде .

Пример. Найти матрицу линейного оператора, отображающего базис

в систему векторов .

Здесь , , , и получаем:

Проверка осуществляется умножением получившейся матрицы на каждый вектор: .

Аналогично решаются подобные задачи и для трёхмерного пространства. В приложении (§5) есть несколько вариантов таких задач.

2.3. Прочие способы нахождения матрицы оператора.

Существуют также примеры, где линейный оператор задаётся другими способами, отличными от рассмотренных в п. 2.1 и 2.2.

Пример. Линейными операторами являются как правое, так и левое векторное умножение на фиксированный вектор в трёхмерном пространстве, то есть отображения вида и . Построим матрицу одного из этих операторов, . Для этого найдём образы всех трёх базисных векторов линейного пространства.

Координаты полученных векторов запишем в виде столбцов матрицы оператора.

Аналогично можно построить матрицу линейного оператора :

Пример. Линейный оператор дифференцирования в пространстве всех многочленов степени не более n. Это пространство размерности n + 1. Возьмём в качестве базиса элементы , , ,…, .

Матрица этого линейного оператора:

Линейные операторы могут отображать не только пространства конечной размерности, но и бесконечномерные пространства. Так, оператор дифференцирования может рассматриваться также в пространстве всех непрерывных функций. (В этом пространстве нет конечного базиса). В этом случае, очевидно, оператор не может быть задан матрицей конечного порядка.

Матрица линейного оператора. преобразование подобия. собственные значения и собственные векторы линейного оператора. диагонализация матриц

Задание 1. Линейный оператор преобразует векторы , , в векторы , , . Найти матрицу линейного оператора.

Связаны между собой соотношением , откуда .

Так как , то , а искомая матрица линейного оператора .

Задание 2. Пусть линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если матрица является матрицей перехода от базиса к базису .

Решение. Матрицы и линейного оператора , заданного в разных базисах, связаны между собой соотношением . Так как , то

Задание 3. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Связь между матрицами и линейного оператора в разных базисах определяется формулой , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

Задание 4. Линейный оператор в базисе задан матрицей . Найти матрицу этого линейного оператора в базисе , если , .

Решение. Матрицы и связаны между собой соотношением , где – матрица перехода от базиса к базису .

Составим матрицу : , тогда и, следовательно,

Задание 5. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей .

Решение. Для нахождения собственных значений линейного оператора составим характеристическое уравнение , т. е. . Раскрывая определитель, получим , т. е. , .

По определению называется собственным вектором линейного оператора , соответствующим собственному значению , если .

Найдём собственные векторы и , соответствующие собственным значениям и .

При получим: , что равносильно такой однородной системе уравнений:

Если – базисная переменная, а – свободная, то .

При : , что равносильно однородной системе уравнений

Пусть – базисная переменная, – свободная. Примем , тогда , а следовательно, .

Так как собственные векторы соответствуют различным собственным значениям, то они должны быть линейно независимы. Проверим линейную независимость полученных собственных векторов и .

Составим матрицу . Так как , то собственные векторы и линейно независимы.

Ответ: собственные числа , ; собственные векторы , .

Задание 6. Привести матрицу линейного оператора к диагональному виду.

Решение. Матрица линейного оператора будет диагональной в базисе из собственных векторов, если такой базис существует. Найдём собственные значения и собственные векторы линейного оператора.

Запишем характеристическое уравнение: , т. е. или , откуда получаем , .

Найдём собственные векторы И .

При получим: , что соответствует следующей однородной системе уравнений:

Пусть – базисная переменная, – свободная. Полагая , получим .

При : . Соответствующая однородная система уравнений имеет вид:

Откуда . Пусть – базисная переменная, – свободная, примем тогда , а, следовательно, .

Собственные векторы и отвечают различным собственным значениям, поэтому они линейно независимы, т. е. могут составить базис. Матрица линейного оператора в базисе из собственных векторов и имеет диагональный вид: .

Можно проверить полученный результат. Так как , где матрица в случае перехода к базису из собственных векторов и имеет вид , следовательно,

Задание 7. Найти собственные значения и собственные векторы линейного оператора , заданного в некотором базисе матрицей . Построить, если это возможно, базис из собственных векторов и найти матрицу этого линейного оператора в базисе из собственных векторов.

Решение. Запишем характеристическое уравнение:

Найдём собственные векторы линейного оператора.

При : , тогда соответствующая однородная система уравнений примет вид:

Что равносильно такой системе:

Пусть и – базисные переменные, – свободная. Полагая , получим .

При : , или, переходя к однородной системе уравнений, получим

Пусть и – базисные переменные, – свободная. Если , то .

При получим: , и однородная система уравнений примет вид:

Пусть и – базисные переменные, – свободная. Тогда если , то . Найденные собственные векторы соответствуют различным собственным значениям, поэтому они линейно независимы, значит, существует базис из собственных векторов. Матрица перехода к такому базису , тогда

Матрица линейного оператора в базисе из собственных векторов имеет вид: .

Можно сделать проверку полученных результатов:

Ответ: , , ; , , ; матрица линейного оператора в базисе из собственных векторов .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *