Дискриминант
квадратного уравнения
Мы уже разобрали, как решать квадратные уравнения. Теперь давайте более подробно рассмотрим, что называют дискриминантом квадратного уравнения.
Вернемся к нашей формуле для нахожденя корней квадратного уравнения.
x1;2 =
−b ± √ b 2 − 4ac |
2a |
Запомните!
Выражение « b 2 − 4ac », которое находится под корнем, принято называть дискриминантом и обозначать буквой « D ».
По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:
x1;2 =
−b ± √ D |
2a |
, где « D = b 2 − 4ac »
По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».
В зависимости от знака « D » (дискриминанта) квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.
Нахождение дискриминанта, формула, сравнение с нулём
Дискриминант — многозначный термин. В данной статье речь пойдёт о дискриминанте многочлена, который позволяет определить, есть ли у данного многочлена действительные решения. Формула для квадратного многочлена встречается в школьном курсе алгебры и анализа. Как найти дискриминант? Что нужно для решения уравнения?
Квадратный многочлен, как искать его корни
Квадратным многочленом или уравнением второй степени называется i * w ^ 2 + j * w + k равный 0, где «i» и «j» — первый и второй коэффициент соответственно, «k» — константа, которую иногда именуют «свободным членом», а «w» — переменная. Его корнями окажутся все значения переменной, при которых оно превращается в тождество. Такое равенство допустимо переписать, как произведение i, (w — w1) и (w — w2) равное 0. В этом случае очевидно, что если коэффициент «i» не обращается в ноль, то функция в левой части станет нулевой только в случае, если x принимает значение w1 или w2. Эти значения являются результатом приравнивания многочлена к нулю.
Для нахождения значения переменной, при котором квадратный многочлен обращается в ноль, используется вспомогательная конструкция, построенная на его коэффициентах и названная дискриминантом. Эта конструкция рассчитывается согласно формуле D равняется j * j — 4 * i * k. Зачем она используется?
- Она говорит, имеются ли действительные результаты.
- Она помогает их высчитать.
Как это значение показывает наличие вещественных корней:
- Если оно положительное, то можно найти два корня в области действительных чисел.
- Если дискриминант равен нулю, то оба решения совпадают. Можно сказать, что есть всего одно решение, и оно из области вещественных чисел.
- Если дискриминант меньше нуля, то у многочлена отсутствуют вещественные корни.
Варианты расчётов для закрепления материала
Для суммы равной 0 рассчитываем D по формуле 3 * 3 — 4 * 7 * 1 = 9 — 28 получаем -19. Значение дискриминанта ниже нуля говорит об отсутствии результатов на действительной прямой.
Если рассмотреть 2 * w ^ 2 — 3 * w + 1 эквивалентный 0, то D рассчитывается как (-3) в квадрате за вычетом произведения чисел и равняется 9 — 8, то есть 1. Положительное значение говорит о двух результатах на вещественной прямой.
Если взять сумму
Использование дискриминанта в вычислении корней
Эта вспомогательная конструкция не только показывает количество вещественных решений, но и помогает их находить. Общая формула расчёта для уравнения второй степени такова:
w = (-j +/- d) / (2 * i), где d — дискриминант в степени 1/2.
Допустим, дискриминант ниже нулевой отметки, тогда d — мнимо и результаты мнимые.
D нулевой, тогда d, равный D в степени 1/2, тоже нулевой. Решение: -j / (2 * i). Снова рассматриваем 1 * w ^ 2 + 2 * w + 1 = 0, находим результаты эквивалентные -2 / (2 * 1) = -1.
Предположим, D > 0, значит, d — вещественное число, и ответ здесь распадается на две части: w1 = (-j + d) / (2 * i) и w2 = (-j — d) / (2 * i). Оба результата окажутся действительные. Взглянем на 2 * w ^ 2 — 3 * w + 1 = 0. Здесь дискриминант и d — единицы. Выходит, w1 равняется (3 + 1) делить (2 * 2) или 1, а w2 равен (3 — 1) делить на 2 * 2 или 1/2.
Результат приравнивания квадратного выражения к нулю вычисляется согласно алгоритму:
- Вычисление дискриминанта.
- Определение количества действительных решений.
- Вычисление d = D ^ (1/2).
- Нахождение результата в соответствии с формулой (-j +/- d) / (2 * i).
- Подстановка полученного результата в исходное равенство для проверки.
Некоторые частные случаи
В зависимости от коэффициентов решение может несколько упрощаться. Очевидно, что если коэффициент перед переменной во второй степени равен нулю, то получается линейное равенство. Когда коэффициент перед переменной в первой степени нулевой, то возможны два варианта:
- многочлен раскладывается в разность квадратов при отрицательном свободном члене;
- при положительной константе действительных решений найти нельзя.
Если свободный член нулевой, то корни будут
Но есть и другие частные случаи, упрощающие нахождение решения.
Приведенное уравнение второй степени
Приведенным именуют такой квадратный трёхчлен, где коэффициент перед старшим членом — единица. Для данной ситуации применима теорема Виета, гласящая, что сумма корней равняется коэффициенту при переменной в первой степени, помноженному на -1, а произведение соответствует константе «k».
Следовательно, w1 + w2 равно -j и w1 * w2 равняется k, если первый коэффициент — единица. Чтобы убедиться в правильности такого представления, можно выразить из первой формулы w2 = -j — w1 и подставить его во второе равенство w1 * (-j — w1) = k. В итоге получается исходное равенство w1 ^ 2 + j * w1 + k = 0.
Важно отметить, что i * w ^ 2 + j * w + k = 0 удастся привести путём деления на «i». Результат будет: w ^ 2 + j1 * w + k1 = 0, где j1 равно j / i и k1 равно k / i.
Взглянем на уже решенное 2 * w ^ 2 — 3 * w + 1 = 0 с результатами w1 = 1 и w2 = 1/2. Надо поделить его пополам, в итоге w ^ 2 — 3/2 * w + 1/2 = 0. Проверим, что для найденных результатов справедливы условия теоремы: 1 + 1/2 = 3/2 и 1*1/2 = 1/2.
Чётный второй множитель
Если множитель при переменной в первой степени (j) делится на 2, то удастся упростить формулу и искать решение через четверть дискриминанта D/4 = (j / 2) ^ 2 — i * k. получается w = (-j +/- d/2) / i, где d/2 = D/4 в степени 1/2.
Если i = 1, а коэффициент j — чётный, то решением будет произведение -1 и половины коэффициента при переменной w, плюс/минус корень из квадрата этой половины за вычетом константы «k». Формула: w = -j / 2 +/- (j ^ 2 / 4 — k) ^ 1/2.
Более высокий порядок дискриминанта
Рассмотренный выше дискриминант трёхчлена второй степени — это наиболее употребимый частный случай. В общем же случае дискриминант многочлена представляет собой перемноженные квадраты разностей корней этого многочлена. Следовательно, дискриминант равный нулю говорит о наличии как минимум двух кратных решений.
Рассмотрим i * w ^ 3 + j * w ^ 2 + k * w + m = 0.
D = j ^ 2 * k ^ 2 — 4 * i * k ^ 3 — 4 * i ^ 3 * k — 27 * i ^ 2 * m ^ 2 + 18 * i * j * k * m.
Допустим, дискриминант превосходит ноль. Это значит, что имеется три корня в области действительных чисел. При нулевом есть кратные решения. Если D < 0, то два корня комплексно-сопряженные, которые дают отрицательное значение при возведении в квадрат, а также один корень — вещественный.
Дискриминант
Например, для трехчлена \(3x^2+2x-7\), дискриминант будет равен \(2^2-4\cdot3\cdot(-7)=4+84=88\). А для трехчлена \(x^2-5x+11\), он будет равен \((-5)^2-4\cdot1\cdot11=25-44=-19\).
Дискриминант обозначается буквой \(D\) и часто используется при решении квадратных уравнений . Также по значению дискриминанта можно понять, как примерно выглядит график квадратичной функции (см. ниже).
Дискриминант и корни квадратного уравнения
Значение дискриминанта показывает количество корней квадратного уравнения:
— если \(D\) положителен – уравнение будет иметь два корня;
— если \(D\) равен нулю – только один корень;
— если \(D\) отрицателен – корней нет.
Это не надо учить, к такому выводу несложно прийти, просто зная, что квадратный корень из дискриминанта (то есть, \(\sqrt
Если дискриминант положителен
В этом случае корень из него – это некоторое положительное число, а значит \(x_\) и \(x_\) будут различны по значению, ведь в первой формуле \(\sqrt
Пример: Найдите корни уравнения \(x^2+2x-3=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Найдем корни уравнения
Получили два различных корня из-за разных знаков перед \(\sqrt
На графике квадратичной функции положительный дискриминант будет означать пересечение функции с осью икс ровно в двух точках – корнях уравнения. И это логично. Вдумайтесь – если уравнение \(x^2+2x-3=0\) имеет корни \(x_=1\) и \(x_=-3\), значит при подстановке \(1\) и \(-3\) вместо икса, левая часть станет нулем. А значит, если те же самые единицу и минус тройку подставить в функцию \(y=x^2+2x-3\) получим \(y=0\). То есть, функция \(y=x^2+2x-3\) проходит через точки \((1;0)\) и \((-3;0)\) (подробнее смотри статью Как построить график функции ).
Если дискриминант равен нулю
А сколько корней будет, если дискриминант равен нулю? Давайте рассуждать.
Формулы корней выглядят так: \(x_=\) \(\frac>\) и \(x_=\) \(\frac>\) . И если дискриминант – ноль, то и корень из него тоже ноль. Тогда получается:
То есть, значения корней уравнения будут совпадать, потому что прибавление или вычитание нуля ничего не меняет.
Пример: Найдите корни уравнения \(x^2-4x+4=0\)
Решение:
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Получили два одинаковых корня, поэтому нет смысла писать их по отдельности – записываем как один.
На графике квадратичной функции нулевой дискриминант означает одну точку пересечения функции с осью икс. Все аналогично изложенному выше: два корня – две точки пересечения, один корень – одна. В частности, функция \(y=x^2-4x+4\) будет выглядеть вот так:
Если дискриминант отрицателен
В этом случае корень из дискриминанта извлечь нельзя (т.к. квадратный корень из отрицательного числа – невычислим), а значит и корни квадратного уравнения мы вычислить не можем.
Пример: Найдите корни уравнения \(x^2+x+3=0\)
Решение
Вычисляем дискриминант по формуле \(D=b^2-4ac\)
Находим корни уравнения
Оба корня содержат невычислимое выражение \(\sqrt\), значит, и сами не вычислимы
Ответ: нет корней.
То есть, отсутствие корней у квадратного уравнения с отрицательным дискриминантом – не чья-то случайная придумка. Это не потому что «в учебнике так написано», а действительно правда: невозможно найти такое число, чтоб при подстановке его вместо икса в выражение \(x^2+x+3\) получился ноль.
Матхак: заметим, что если вы решаете обычное квадратное уравнение или неравенство и получаете отрицательный дискриминант, стоит проверить решение еще раз, так как это не частая ситуация в школьном курсе математики.
Ну, а на графиках все просто: нет корней – нет точек пересечения с осью икс!
Как решить квадратное уравнение
Квадратное уравнение — алгебраическое уравнение, общего вида.
Где — неизвестное.
— коэффициенты, где
.
Для решения квадратного уравнения общего вида, необходимо найти корни .
При условии, что дискриминант больше нуля, корня 2, вычисляются они по формуле:
Дискриминант больше нуля
Находим дискриминант по формуле:
— дискриминант больше нуля, ищем по первому варианту.
Находим x1
Дискриминант равен 0
Находим по формуле:
— дискриминант равен нулю, ищем по второму варианту.