Определите сколько корней имеет уравнение

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

— это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда — это просто число D = b 2 − 4 ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

  1. x 2 − 8 x + 12 = 0;
  2. 5 x 2 + 3 x + 7 = 0;
  3. x 2 − 6 x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Формула корней квадратного уравнения

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2 x − 3 = 0;
  2. 15 − 2 x − x 2 = 0;
  3. x 2 + 12 x + 36 = 0.

Первое уравнение:
x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Решение простого квадратного уравнения

Второе уравнение:
15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

Наконец, третье уравнение:
x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9 x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (− c / a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (− c / a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Разложение уравнения на множители

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

  1. x 2 − 7 x = 0;
  2. 5 x 2 + 30 = 0;
  3. 4 x 2 − 9 = 0.

x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

    , часть 1

Определите с помощью графика сколько корней имеет уравнение √(1 — x) — x ^ 2 — x + 1 = 0?

Определите с помощью графика сколько корней имеет уравнение √(1 — x) — x ^ 2 — x + 1 = 0.

Корней уравнения 2 — а смотри график ниже

х1 = 0, 8 и х2 = — 2, 2.

С помощью графиков определите сколько корней имеет уравнение, и найдите эти корни : х ^ 3 + x — 2 = 0?

С помощью графиков определите сколько корней имеет уравнение, и найдите эти корни : х ^ 3 + x — 2 = 0.

ПОМОГИТЕ ПОЖАЛУЙСТААААААА?

/ / / / / / / / / / с помощью графиков определите сколько корней имеет уравнение cosx = x ^ 2 + 0.

С помощью графиков определите сколько корней имеет уравнение х ^ 2 + 2х — 4 = 3 / х?

С помощью графиков определите сколько корней имеет уравнение х ^ 2 + 2х — 4 = 3 / х.

C помощью схематических графиков выясните, сколько корней имеет уравнение x ^ 2 + 1 = — x?

C помощью схематических графиков выясните, сколько корней имеет уравнение x ^ 2 + 1 = — x.

УМОЛЯЮЮ ПОМОГИТЕЕ Завтра по этому контрольная, помогите пожалуйста?

УМОЛЯЮЮ ПОМОГИТЕЕ Завтра по этому контрольная, помогите пожалуйста.

С помощью графиков выясните, сколько корней имеет уравнение.

С помощью графиков выясните , сколько корней имеет уравнение 1 / x = — x ^ 2 + 4?

С помощью графиков выясните , сколько корней имеет уравнение 1 / x = — x ^ 2 + 4.

Сколько корней имеет уравнение без графиков?

Сколько корней имеет уравнение без графиков.

С помощью графика определите сколько решений имеет система уравнений?

С помощью графика определите сколько решений имеет система уравнений.

С помощью графиков определите сколько корней имеет уравнение x ^ 2 = 1, 5 + 1?

С помощью графиков определите сколько корней имеет уравнение x ^ 2 = 1, 5 + 1.

Сколько корней имеет уравнение (С ПОМОЩЬЮ ГРАФИКА)?

Сколько корней имеет уравнение (С ПОМОЩЬЮ ГРАФИКА).

Вы открыли страницу вопроса Определите с помощью графика сколько корней имеет уравнение √(1 — x) — x ^ 2 — x + 1 = 0?. Он относится к категории Алгебра. Уровень сложности вопроса – для учащихся 10 — 11 классов. Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие ответы по интересующей теме. Чтобы получить наиболее развернутый ответ, можно просмотреть другие, похожие вопросы в категории Алгебра, воспользовавшись поисковой системой, или ознакомиться с ответами других пользователей. Для расширения границ поиска создайте новый вопрос, используя ключевые слова. Введите его в строку, нажав кнопку вверху.

— 9 (8 — 9x) = 4x + 5 — 72 + 81x = 4x + 5 81x — 4x = 5 + 72 77x = 77 x = 1.

( — 10)²( — 0, 7 — 5 * ( — 10)) — 32 = 100 * ( — 0. 7 + 50) — 32 = 100 * 49. 3 — 32 = 4930 — 32 = 4898.

Photomath скачай , он решит.

АВ ( 3 ; 1 ) BC ( (1 — 3) ; (7 — 1)) BС( — 2 ; 6) Скалярное произведение векторов AB * BC = 3 * ( — 2) + 1 * 6 = 0 Вектора перпендикулярны. Угол B прямой.

— 48. Если хочешь скачай калькулятор дробей.

Минус 47. Одна треть. Вот так вот.

— (4 а в 5 степени * в в 3 степени ) 2 степень / 8a в 7 степени в в 4 степени . — 16 а в 10 степени в 6 степени / 8а в 7 степени в в 4 степени . — 2а в 3 степени в 2 степени .

Применение производной для решения нелинейных уравнений и неравенств

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. \begin f(x)=ax^3+bx^2+cx+d\\ f'(x)=3ax^2+bx+c \end Если в уравнении \(f'(x)=0\) дискриминант \(D=4b^2-12ac=4(b^2-3ac)\gt 0\), кубическая парабола имеет две точки экстремума: \(x_=\frac>\). Если при этом значения функции в точках экстремума \(f(x_1)\cdot f(x_2)\lt 0\), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но \(f(x_1)\cdot f(x_2)=0\), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) \(x^3+3x^2-4=0\)
\(b^2-3ac=9\gt 0 (c=0) \)
\(f(x)=x^3+3x^2-4 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-4,\ f(x_2)=0 \)
\(f(x_1)\cdot f(x_2)=0\Rightarrow\) два корня
Пример 1
2) \(x^3+3x^2-1=0\)
\(b^2-3ac=9\gt 0 \)
\(f(x)=x^3+3x^2-1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=-1,\ f(x_2)=3 \)
\(f(x_1)\cdot f(x_2)\lt 0\Rightarrow\) три корня
Пример 1
3) \(x^3+3x^2+1=0\)
\(b^2-3ac=9\gt 0\)
\(f(x)=x^3+3x^2+1 \)
\(f'(x)=3x^2+6x=3x(x+2) \)
\(x_1=0,\ x_2=-2 \)
\(f(x_1)=1,\ f(x_2)=5 \)
\(f(x_1)\cdot f(x_2)\gt 0\Rightarrow\) один корень
Пример 1
4) \(x^3+x^2+x+3=0\)
\(b^2-3ac=1-3\lt 0 \)
Один корень
Пример 1

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения \(\frac 1x+\frac+\frac\)
б) Найдите число корней уравнения \(\frac 1x+\frac+\frac=k\)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью \(y=1\). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=\frac1x+\frac+\frac $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: \(x\ne\left\\)
Все три точки – точки разрыва 2-го рода. \begin \lim_\left(\frac1x+\frac+\frac\right)=-\infty-1-\frac13=-\infty\\ \lim_\left(\frac1x+\frac+\frac\right)=+\infty-1-\frac13=+\infty\\ \lim_\left(\frac1x+\frac+\frac\right)=1-\infty-\frac12=-\infty\\ \lim_\left(\frac1x+\frac+\frac\right)=1+\infty-\frac12=+\infty\\ \lim_\left(\frac1x+\frac+\frac\right)=\frac13+\frac12-\infty=-\infty\\ \lim_\left(\frac1x+\frac+\frac\right)=\frac13+\frac12+\infty=+\infty \end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные \(x=0, x=1, x=3\) – точки разрыва 2-го рода
2. Горизонтальные: \begin \lim_\left(\frac1x+\frac+\frac\right)=-0-0-0=-0\\ \lim_\left(\frac1x+\frac+\frac\right)=+0+0+0=+0\\ \end Горизонтальная асимптота \(y=0\)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: \(k=0\), нет.
4) Первая производная $$ f'(x)=-\frac-\frac-\frac\lt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. \(x=0\) – асимптота
Точки пересечения с OX – две, \(0\lt x_1\lt 1,1\lt x_2\lt 3\)

7) График
Пример 2
Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь \(y=k\) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При \(k\lt 0\) — три корня
При \(k=0\) — два корня
При \(k\gt 0\) — три корня

Ответ: а) 3 корня; б) при \(k=0\) два корня, при \(k\ne 0\) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ \sqrt+\sqrt=a $$ имеет по крайней мере одно решение.

Исследуем функцию \(f(x)=\sqrt+\sqrt\)
ОДЗ: \( \begin x-1\geq 0\\ 10-2x\geq 0 \end \Rightarrow \begin x\geq 1\\ x\leq 5 \end \Rightarrow 1\leq x\leq 5 \)
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: \(f(1)=0+\sqrt=2\sqrt,\ f(5)=\sqrt+0=2\)
Первая производная: \begin f'(x)=\frac>+\frac>=\frac>-\frac>\\ f'(x)=0\ \text\ 2\sqrt=\sqrt\Rightarrow 4(x-1)=10-2x\Rightarrow 6x=14\Rightarrow x=\frac73\\ f\left(\frac73\right)=\sqrt+\sqrt=\sqrt+\sqrt>=\frac>=2\sqrt \end Промежутки монотонности:

\(x\) 1 (1; 7/3) 7/3 (7/3; 5) 5
\(f'(x)\) + 0
\(f(x)\) \(2\sqrt\) \(\nearrow \) max
\(2\sqrt\)
\(\searrow \) 2

Можем строить график:
Пример 3
\(y=a\) — горизонтальная прямая.
Количество точек пересечения \(f(x)\) и \(y\) равно количеству решений.
Получаем:

$$ a\lt 2 $$ нет решений
$$ 2\leq a\lt 2\sqrt $$ 1 решение
$$ 2\sqrt\leq a\lt 2\sqrt $$ 2 решения
$$ a=2\sqrt $$ 1 решение
$$ a\gt 2\sqrt $$ нет решений

По крайней мере одно решение будет в интервале \(2\leq a\leq 2\sqrt\).

Ответ: \(a\in\left[2;2\sqrt\right]\)

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство \(\frac\gt \frac\)

Разобьем неравенство на совокупность двух систем.
Если \(x\gt 1\), то \(x-1\gt 0\), на него можно умножить слева и справа и не менять знак.
Если \(x\lt 1\), то \(x-1\lt 0\), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: \(x\gt 0\)

Получаем совокупность: \begin \left[ \begin\begin x\gt 1\\ 2+\log_3 x\gt\frac \end \\ \begin 0\lt x\lt 1\\ 2+\log_3 x\lt\frac \end \end \right. \\ 2+\log_3 x\gt \frac\Rightarrow \log_3 x\gt \frac\Rightarrow \log_3 x\gt \frac\\ \left[ \begin\begin x\gt 1\\ \log_3 x\gt\frac \end \\ \begin 0\lt x\lt 1\\ \log_3 x\lt\frac \end \end \right. \end Исследуем функцию \(f(x)=\frac=\frac=1-\frac\)
Точка разрыва: \(x=\frac12\) – вертикальная асимптота
Односторонние пределы: \begin \lim_\left(1-\frac\right)=1-\frac=+\infty\\ \lim_\left(1-\frac\right)=1-\frac=-\infty \end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: \(y=1\) \begin \lim_\left(1-\frac\right)=1-\frac=1+0\\ \lim_\left(1-\frac\right)=1-\frac=1-0 \end На минус бесконечности кривая стремится к \(y=1\) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=\left(1-\frac\right)’=\frac\gt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-\frac $$ Одна критическая точка 2-го порядка \(x=\frac12\)

\(x\) \(\left(0;\frac12\right)\) \(\frac12\) \(\left(\frac12;+\infty\right)\)
\(f»(x)\) >0 <0
\(f(x)\) \(\cup\) \(\cap\)

Пересечения с осью OY: \(f(0)=1-\frac=4\), точка (0;4)
Пересечение с осью OX: \(1-\frac=0\Rightarrow 2x-1=3 \Rightarrow x=2\), точка (2;0)
Строим графики \(f(x)=\frac\) и \(g(x)=\log_3 x\)
Пример 4
Первая система из совокупности \( \begin x\gt 1\\ \log_3 x\gt \frac \end \)
Логарифм при \(x\gt 1\) все время выше, чем правая ветка гиперболы, т.е. система справедлива для всех \(x\gt 1\).
Вторая система из совокупности \( \begin 0\lt x\lt 1\\ \log_3 x\lt \frac \end \)
Логарифм попадает под левую ветку гиперболы на интервале \(0\lt x\lt\frac12\), т.е. $$ \begin 0\lt x\lt 1\\ 0\lt x\lt\frac12 \end \Rightarrow 0\lt x\lt\frac12 $$ Решение совокупности – это объединение полученных решений систем: $$ 0\lt x\lt\frac12\cup x\gt 1 $$ Ответ: \(x\in\left(0;\frac12\right)\cup (1;+\infty)\)

Уравнения с параметрами:графический метод решения

В статье рассматривается графический метод решения некоторых уравнений с параметрами, который весьма эффективен, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра a.

Задача 1. Сколько корней имеет уравнение | | x | – 2 | = a в зависимости от параметра a?

Решение. В системе координат (x; y) построим графики функций y = | | x | – 2 | и y = a. График функции y = | | x | – 2 | изображен на рисунке.

Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).

Из чертежа видно, что:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | | x | – 2 | две общие точки; значит, исходное уравнение имеет два корня (в данном случае корни можно найти: x1,2 = д 2).
Если 0 < a < 2, то прямая y = a имеет с графиком функции y = | | x | – 2 | четыре общие точки и, следовательно, исходное уравнение имеет четыре корня.
Если a = 2, то прямая y = 2 имеет с графиком функции три общие точки. Тогда исходное уравнение имеет три корня.
Если a > 2, то прямая y = a будет иметь с графиком исходной функции две точки, то есть данное уравнение будет иметь два корня.

если a < 0, то корней нет;
если a = 0, a > 2, то два корня;
если a = 2, то три корня;
если 0 < a < 2, то четыре корня.

Задача 2. Сколько корней имеет уравнение | x 2 – 2| x | – 3 | = a в зависимости от параметра a?

Решение. В системе координат (x; y) построим графики функций y = | x 2 – 2| x | – 3 | и y = a.

График функции y = | x 2 – 2| x | – 3 | изображен на рисунке. Графиком функции y = a является прямая, параллельная Ox или с ней совпадающая (когда a = 0).

Из чертежа видно:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | x2 – 2| x | – 3 | две общие точки, а также прямая y = a будет иметь с графиком функции y = | x 2 – 2| x | – 3 | две общие точки при a > 4. Значит, при a = 0 и a > 4 исходное уравнение имеет два корня.
Если 0 < a < 3, то прямая y = a имеет с графиком функции y = | x 2 – 2| x | – 3 | четыре общие точки, а также прямая y=a будет иметь с графиком построенной функции четыре общие точки при a = 4. Значит, при 0 < a < 3, a = 4 исходное уравнение имеет четыре корня.
Если a = 3, то прямая y = a пересекает график функции в пяти точках; следовательно, уравнение имеет пять корней.
Если 3 < a < 4, прямая y = a пересекает график построенной функции в шести точках; значит, при этих значениях параметра исходное уравнение имеет шесть корней.
Если a < 0, уравнение корней не имеет, так как прямая y = a не пересекает график функции y = | x 2 – 2| x | – 3 |.

если a < 0, то корней нет;
если a = 0, a > 4, то два корня;
если 0 < a < 3, a = 4, то четыре корня;
если a = 3, то пять корней;
если 3 < a < 4, то шесть корней.

Задача 3. Сколько корней имеет уравнение

в зависимости от параметра a?

Решение. Построим в системе координат (x; y) график функции но сначала представим ее в виде:

Прямые x = 1, y = 1 являются асимптотами графика функции. График функции y = | x | + a получается из графика функции y = | x | смещением на a единиц по оси Oy.

Графики функций пересекаются в одной точке при a > – 1; значит, уравнение (1) при этих значениях параметра имеет одно решение.

При a = – 1, a = – 2 графики пересекаются в двух точках; значит, при этих значениях параметра уравнение (1) имеет два корня.
При – 2 < a < – 1, a < – 2 графики пересекаются в трех точках; значит, уравнение (1) при этих значениях параметра имеет три решения.

если a > – 1, то одно решение;
если a = – 1, a = – 2, то два решения;
если – 2 < a < – 1, a < – 1, то три решения.

Замечание. При решении уравнения (1) задачи 3 особо следует обратить внимание на случай, когда a = – 2, так как точка (– 1; – 1) не принадлежит графику функции но принадлежит графику функции y = | x | + a.

Перейдем к решению другой задачи.

Задача 4. Сколько корней имеет уравнение

x + 2 = a | x – 1 | (2)

в зависимости от параметра a?

Решение. Заметим, что x = 1 не является корнем данного уравнения, так как равенство 3 = a · 0 не может быть верным ни при каком значении параметра a. Разделим обе части уравнения на | x – 1 |(| x – 1 | № 0), тогда уравнение (2) примет вид В системе координат xOy построим график функции

График этой функции изображен на рисунке. Графиком функции y = a является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).

Далее рассуждая так же, как и в задаче 3, получаем ответ.

если a Ј – 1, то корней нет;
если – 1 < a Ј 1, то один корень;
если a > 1, то два корня.

Рассмотрим наиболее сложное уравнение.

Задача 5. При каких значениях параметра a уравнение

ax 2 + | x – 1 | = 0 (3)

имеет три решения?

Решение. 1. Контрольным значением параметра для данного уравнения будет число a = 0, при котором уравнение (3) примет вид 0 + | x – 1 | = 0, откуда x = 1. Следовательно, при a = 0 уравнение (3) имеет один корень, что не удовлетворяет условию задачи.

2. Рассмотрим случай, когда a № 0.

Перепишем уравнение (3) в следующем виде: ax 2 = – | x – 1 |. Заметим, что уравнение будет иметь решения только при a < 0.

В системе координат xOy построим графики функций y = | x – 1 | и y = ax 2 . График функции y = | x – 1 | изображен на рисунке. Графиком функции y = ax 2 является парабола, ветви которой направлены вниз, так как a < 0. Вершина параболы — точка (0; 0).

Уравнение (3) будет иметь три решения только тогда, когда прямая y = – x + 1 будет касательной к графику функции y=ax 2 .

Пусть x0 — абсцисса точки касания прямой y = – x + 1 с параболой y = ax 2 . Уравнение касательной имеет вид

Запишем условия касания:

Данное уравнение можно решить без использования понятия производной.

Рассмотрим другой способ. Воспользуемся тем, что если прямая y = kx + b имеет единственную общую точку с параболой y = ax 2 + px + q, то уравнение ax 2 + px + q = kx + b должно иметь единственное решение, то есть его дискриминант равен нулю. В нашем случае имеем уравнение ax 2 = – x + 1 (a № 0). Дискриминант уравнения

Задачи для самостоятельного решения

6. Сколько корней имеет уравнение в зависимости от параметра a?

1) | | x | – 3 | = a;
2) | x + 1 | + | x + 2 | = a;
3) | x 2 – 4| x | + 3 | = a;
4) | x 2 – 6| x | + 5 | = a.

1) если a<0, то корней нет; если a=0, a>3, то два корня; если a=3, то три корня; если 0<a<3, то четыре корня;
2) если a<1, то корней нет; если a=1, то бесконечное множество решений из отрезка [– 2; – 1]; если a > 1, то два решения;
3) если a<0, то корней нет; если a=0, a<3, то четыре корня; если 0<a<1, то восемь корней; если a=1, то шесть корней; если a=3, то три решения; если a>3, то два решения;
4) если a<0, то корней нет; если a=0, 4<a<5, то четыре корня; если 0<a< 4, то восемь корней; если a=4, то шесть корней; если a=5, то три корня; если a>5, то два корня.

7. Сколько корней имеет уравнение | x + 1 | = a(x – 1) в зависимости от параметра a?

Указание. Так как x = 1 не является корнем уравнения, то данное уравнение можно привести к виду .

Ответ: если a Ј –1, a > 1, a=0, то один корень; если – 1<a<0, то два корня; если 0<a Ј 1, то корней нет.

8. Сколько корней имеет уравнение x + 1 = a | x – 1 |в зависимости от параметра a?

Указание. Привести уравнение к виду Построить график (см. рисунок).

Ответ: если a Ј –1, то корней нет; если – 1<a Ј 1, то один корень; если a>1, то два корня.

9. Сколько корней имеет уравнение

2| x | – 1 = a(x – 1)

в зависимости от параметра a?

Указание. Привести уравнение к виду

Ответ: если a Ј –2, a>2, a=1, то один корень; если –2<a<1, то два корня; если 1<a Ј 2, то корней нет.

10. Сколько корней имеет уравнение

в зависимости от параметра a?

Указание. Построить графики левой и правой частей данного уравнения.

Ответ: если a Ј 0, a і 2, то один корень; если 0<a<2, то два корня.

11. При каких значениях параметра a уравнение

x 2 + a | x – 2 | = 0

имеет три решения?

Указание. Привести уравнение к виду x 2 = – a | x – 2 |.

Ответ: при a Ј –8.

12. При каких значениях параметра a уравнение

ax 2 + | x + 1 | = 0

имеет три решения?

Указание. Воспользоваться задачей 5. Данное уравнение имеет три решения только в том случае, когда уравнение ax 2 + x + 1 = 0 имеет одно решение, причем случай a = 0 не удовлетворяет условию задачи, то есть остается случай, когда

13. Сколько корней имеет уравнение

x | x – 2 | = 1 – a

в зависимости от параметра a?

Указание. Привести уравнение к виду –x |x – 2| + 1 = a. Построить графики функций y = – x | x – 2 | + 1 и y = a. Отметим, что

Ответ: если a<0, a>1, то один корень; если a=0, a=1, то два корня; если 0<a<1, то три корня.

14. Сколько корней имеет уравнение

в зависимости от параметра a?

Указание. Построить графики правой и левой частей данного уравнения.

Для построения графика функции найдем промежутки знакопостоянства выражений x + 1 и x:

Ответ: если a і 0, то один корень; если – 1 < a < 0, то два корня; если a = – 1, a Ј –2, то три корня; если – 2<a<–1, то четыре корня.

15. Сколько корней имеет уравнение

в зависимости от параметра a?

Указание. Построить графики левой и правой частей данного уравнения.

Ответ: если a<0, a>2, то два корня; если 0 Ј a Ј 2, то один корень.

16. Сколько корней имеет уравнение

в зависимости от параметра a?

Указание. Построить графики левой и правой частей данного уравнения. Для построения графика функции найдем промежутки знакопостоянства выражений x + 2 и x:

Ответ: если a>– 1, то одно решение; если a = – 1, то два решения; если – 3<a<–1, то четыре решения; если a Ј –3, то три решения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *