Скобки в математике
Скобки в математике играют очень важную роль: с помощью них задаётся порядок действий с выражением, обозначаются границы промежутков и необходимость выполнения какого-либо действия над выражением. Также с помощью скобок обозначаются вектора и матрицы и действия с множествами.
Использование круглых скобок в математике
Круглые скобки в математике встречаются наиболее часто, и они используются для множества целей.
Первое применение.
С помощью круглых скобок устанавливается порядок действий для вычисления алгебраического выражения. Выражение, которое стоит в скобках, вычисляется первым, за ним следует вычисление всех остальных.
Например, выражение $2+3\cdot 2$ не равносильно выражению $(2+3)\cdot 2$. Для первого выражения сначала вычисляется произведение, а затем сумма, для второго же выражения сначала вычисляется сумма, так как она стоит в скобках, и лишь затем произведение.
В случае же если в выражении скобок много и одна находится внутри другой — первыми вычисляются скобки с максимальной глубиной вложенности.
Второе применение.
Скобками выделяют отрицательные числа в выражениях для того чтобы избежать путаницы. Например, выражение $(-5) \cdot 2 + (3 \cdot 12)$. Однако, если отрицательное число стоит в выражении на первом месте, оно может и не выделяться скобками.
Третье применение.
Круглые скобки также используются для обозначения действий, которые необходимо совершить над всем выражением, стоящим в скобках. Под действием здесь имеются в виду возведение в степень, взятие производной или вычисление подинтегрального выражения.
$(x+2)^2; \int_1^5 (x^2+5x)dx; f’(x)= (5x^2 + 1)’$
Четвёртое применение.
Круглыми скобками обозначаются отрезки, границы которых не включены интервал. Интервал с круглыми скобками вида $(-a;+a)$ можно иначе записать как строгое неравенство вида $-a$
Пятое применение.
Скобки также используются при необходимости записи зависимости какой- либо функции от аргумента, например, $f(x)=5x+3$.
Готовые работы на аналогичную тему
Пятое применение.
С помощью скобок записываются координаты точек, например, , запись «точка, с координатами $(1; 2)$» обозначает, что по оси абсцисс координата точки равна единице, а по оси ординат — двум.
Квадратные скобки в математике
Что же означают квадратные скобки в математике и для чего они используются?
Квадратные скобки в математике встречаются реже чем круглые, но всё же их можно встретить довольно часто.
Первое применение.
Квадратные скобки иногда используются при записи выражений наряду с круглыми для того, чтобы было проще различить скобки и, соответственно, задаваемый ими порядок действий. Часто с такой целью квадратные скобки используются для записи формул физики и других технических наук.
Здесь первым действием вычисляется выражение $(5+2)$, затем результат умножается на $2$ и а после вычисляется часть выражения в скобках $(25-3+(-5))$. В конце результат, полученный в квадратных скобках умножается на то, что получилось после вычисления выражения $(25-3+(-5))$.
Второе применение.
Другим распространённым применением квадратных скобок является обозначение нестрогих интервалов. Например, интервал вида $[-a;+a]$ иначе можно записать в виде нестрогого неравенства $-a≤x≤a$, что иными словами значит, что $x$ может находиться на промежутке от $-a$ включительно, до $a$ включительно. Иногда можно встретить одновременное использование в математике круглых и прямых скобок, это значит, что на конце отрезка, рядом с которым стоит круглая скобка, равенство строгое, а на том, где скобка квадратная — равенство нестрогое. Например, интервал вида $(-5;5]$ иначе можно записать в виде неравенства $5
Третье применение.
С помощью квадратной скобки записывают совокупности. Совокупности — это системы уравнений, для которых справедливы все множества решений для каждого уравнения, входящего в совокупность.
$\left [ \begin
Фигурная скобка в математике
Первое применение.
С помощью символа фигурной скобки обозначают систему уравнений, решением которой являются корни, подходящие для всех уравнений, включённых в систему.
Второе применение.
Очень часто с помощью знака фигурных скобок обозначают координаты векторов, например: $\vec
Третье применение.
В фигурные скобки заключаются множества, например, $\$ обозначает множетво, которому принадлежат элементы $a,b$ и $c$.
Треугольные скобки
Треугольные скобки — это обозначение, использующееся в таком математическом разделе математики, как теория групп. Например, запись вида $\langle a \rangle \!\,_n$ обозначает циклическую группу порядка $n$, порождённую элементом $a$.
Что означают квадратные скобки в математике?
Ответ bezdelnick опоздал лет на 40. Еще когда я в школе учился, уже отказались от внешних квадратных скобок. Только круглые!
А когда-то да, применялось. Мне отец рассказывал. А еще более внешние, третьего уровня — были фигурные .
Хотя так писать действительно удобнее, и меньше шансов запутаться в скобках, если пример достаточно сложный.
Сейчас квадратные скобки используются для обозначения целой части числа: [1,3] = 1, [5,9] = 5, [-3,8] = -4, [-7,2] = -8.
Подумай, почему отрицательные числа превращаются в -4 и -8, а не в -3 и -7.
Еще квадратные скобки используются для обозначения определителя матрицы. Но ты, скорее всего, еще не знаешь этой темы.
Я просто напишу, что это такое, а более подробно ты изучишь в институте.
[4 _ 5] = 4*7 — 3*5 = 28 — 15 = 13
На подчеркивания не обращай внимания, они здесь вместо пробелов. Сайт пробелы съедает.
Также квадратными скобками обозначаются закрытые множества, в которые входят концы отрезков.
[-1, 3) — это множество действительных от -1 до 3, причем -1 входит в множество, а 3 — не входит.
И наконец, квадратной скобкой слева от нескольких уравнений обозначается их совокупность.
Это когда должно выполняться хотя бы одно из уравнений, любое.
У этой совокупности 3 решения: 2 у первого уравнения и 1 у второго.
В отличие от системы, которая обозначается фигурной скобкой. В системе должны выполняться все уравнения сразу.
У этой системы решений нет, потому что решения первого уравнения не подходят ко второму.
Как репетитор по математике оформляет объединение систем
Системы уравнений и неравенств входили в состав выпускных и вступительных экзаменов по математике во все времена. Даже если в экзаменационном варианте нет прямого задания на решение системы, то существует достаточно высокая вероятность ее появления процессе решения других задач. Репетитор по математике обязан это учитывать. Привести к системам могут задачи на модули, на логарифмы, на графики и даже на синусы с косинусы. Несмотря на то, что подготовка к ЕГЭ по математике нередко сводится к натаскиванию на решение однотипных номеров части «В», не стоит полностью отказываться от тренировки навыков поиска пересечения (объединения) ответов разных объектов. Хотя бы на элементарном уровне. Какими приемами репетитор по математике обеспечивает оптимальную работу ученика с системами? Какая техника оформления систем была бы самой удобной и продуктивной?
К сожалению, школьные учителя и даже некоторые профессиональные репетиторы требуют от детей (уже в 8 классе) оформление систем по принципу «все в одном», упаковывая содержащиеся в них неравенства в единый объект согласно строгим правилам проведения равносильных преобразований. Широко применяются квадратные и фигурные скобки, причем часто в весьма сложном сочетании. Мой опыт репетиторской работы свидетельствует о том, что дети с огромнейшим трудом воспринимают, казалось бы, несложные для математиков логические конструкции с конъюнкциями и дизъюнкциями. Примерно 60-70% всех школьников с трудом припоминают (или не знают вообще) чем отличается квадратная скобка от линейной. А среди тех, кто приходит к репетитору по математике, этот процент повышается в среднем до 90-95%.
Но, тем не менее, для обозначения объединения, некоторые школьные преподаватели все равно используют квадратные скобки. Видимо по привычке. При таком раскладе репетитор по математике оказывается в крайне сложном положении, ибо уровень ученика часто не позволяет осознать сложные логические сочетания. Я не сторонник любой ценой следовать школьным стандартам и часто полностью отказываюсь от постановки квадратных скобок. Без них проще. Особенно когда на носу подготовка к ЕГЭ. Если все же репетитор математики вынужден принимать школьные правила, он мог бы это сделать следующим образом:
Когда репетитор по математике вводит квадратную скобку?
К пониманию разницы между скобками лучше всего подводить ученика постепенно, начиная с 8 класса, когда изучается тема «неравенства». В решении самих неравенств восьмиклассники используют понятие «пересечение ответов» . Почему бы репетитору по математике не показать что такое «объединение ответов»? Задачи на объединение присутствуют в учебнике Макарычева, но они ограничиваются операцияями с уже сформированными промежутками. Это не совсем то, что нужно. Вот пример, на котором репетитор по математике мог бы объяснить назначение квадратной скобки:
Как видите, используется самое простое сочетание. Скобку лучше всего ввести после того, как ученик поймет суть задания. А она заключается в том, чтобы подобрать числа, обеспечивающие выполнение хотя бы одного неравенства (я употребляю общий термин: «условие»). Фразу «хотя бы одного» репетитор по математике сразу же меняет на фразу «или одно или другое». Процент учеников, правильно нашедших репетитору ответ, оказывается не таким и уж низким. Половина детей схватывают суть задания сразу же. Другим нужно показывать, как проверяется наугад взятое число (главное не объяснять только словами).
Данный номер рассматривается репетитором сразу после примера на совокупность, то есть на поиск числа, обеспечивающего выполнение каждого условия:
К сожалению, родители редко приглашают репетитора по математике в 8 классе и подготовкой к ЕГЭ занимаются только с 10 или с 11 класса. В этом случае репетитору приходится объяснять оформление объединения по формальному признаку фигурной скобки: если для проверки произвольно взятого числа достаточно проверить верность одного из нескольких условий (неравенств, уравнений или их систем), то проверяемые объекты можно заключить в квадратную скобку. Корректируя общую формулировку, репетитор по математике вставляет в нее союз «или». Например, для того, чтобы число x было корнем уравнения необходимо чтобы или первый множитель равнялся нулю, или второй. Преподаватель отдельно акцентирует внимание ученика на участии «или» и в случае его уместного употребления разрешает заключить объекты в квадратную скобку.
Если репетитор математики примет строгое оформление, он усложнит ученику одновременно и понимание и практическую работу. Школьные учителя берут за образец оформление систем в задачниках, в которых решения излагаются кратко. Из-за пропусков некоторых его частей удается компактно расписать все равносильные переходы, сохраняя целостность объекта. Репетитору по математике данная методика не подходит категорически. Почему? Ученики начинают вырывать по отдельности неравенства из огромной системы через весьма приличные промежутки времени. Переключение внимания на частные операции сбивает школьников с главного направления. Они забывают что именно им надо пересекать, а что объединять. Путаница возникает страшная. Хорошо, если репетитор по математике рядом и сможет подсказать. А что делать на ЕГЭ? Вряд ли стоит рисковать. Техника действий должна быть максимально прозрачной и удобной в практическом смысле.
Принимая квадратную скобку, репетитор по математике усложняет еще и сортировку решенного. Приходится оформлять отдельные неравенства в колонку (одно под другим) и запоминать какое именно решено, а какое еще нет. Если сами решения длинные, то ученику может не хватить страницы и придется ее переворачивать. Рассеивание внимания при этом гарантировано.
Может ли репетитор по математике обойтись без квадратной скобки
Да, вполне. Для этого применяются стрелочный эквивалент. Например:
Чаще всего в объединение попадают две системы (если больше — лучше использовать иные методы изначально). В нашем случае одна из систем решается в левой части тетрадного листа, а другая в правой. Репетитор по математике разделяет квадратную скобку на две совокупности отдельных систем. На мой взгляд, это самая удобная форма для практической работы ученика. Почему? Те ответы, которые нужно пересечь, распределены по колонкам, при этом операции в левой и в правой колонке проводятся локально и не перемешиваются. Слева — свое пересечение, справа — свое. Очень удобно. Под каждой системой – решение. Системы не нужно вырывать из «квадратной скобки», не нужно переписывать. Финальные ответы, которые репетитор по математике и ученик получают слева и справа «сваливаются в общий ответ» без какой-либо коррекции и пересечения.
Исключение составляют случаи, когда промежутки имеют общую часть. Однако практика показывает, что даже если репетитор по математике забудет напомнить о «склеивании частей», то большинство учеников догадаются до него сами.
Преимущество стрелок для запоминания:
Когда ученик разделяет тетрадный лист на две части, то находясь на любом этапе решения по левой колонке, он помнит о том, что предстоит еще заполнить и правую часть. Это очень важно. Если вы репетитр, то наверняка знаете, что школьники часто забывают разобрать какой-нибуь случай или решить какое-нибдуь неравенство из системы.
Сложность работы с объединением и пересечением носит часто чисто технический характер и связана с проблемой механики решений, то есть запоминанием и сортировкой обрабатываемой информации. При подготовке к ЕГЭ по математике важно получить навык автоматического выполнения операций. Поэтому репетитору по математике крайне необходимо использовать в работе простые и удобные методы, каким является прием стрелочного разделения. Если потребуется объединить три или более системы, репетитор по математике может взять лист формата А4, развернуть его в длину и аккуратно решить задание распределяя системы по нескольким колонкам. Такой подход к оформлению позволит ученику четко разделить и запомнить логическую структуру объекта.
Что в математике обозначают квадратные скобки( [ . ] ) ?
Благодарю всех.
А в этом случае что может означать?
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона
.
КОРОЧЕ: сходи в wikipedia.org и БУДЕТ ТЕБЕ СЧАСТЬЕ. тупо задавать вопросы. удел игрока. .
P.S. Далее пошло из серии МАССИВОВ 🙂
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона