Как считать стандартное отклонение

стандартное отклонение калькулятор

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭ ‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

Среднеквадратическое отклонение калькулятор

Среднеквадратическое отклонение‭ (‬СО‭) ‬-‭ ‬это показатель рассеяния значений во множестве данных относительно их математического ожидания.‭ ‬Обозначается также как СО.‭ ‬Символом среднеквадратического отклонения является‭ ‬σ‭(‬сигма‭)‬.‭ ‬Можно также сказать,‭ ‬что это показатель изменчивости или дисперсии в этом множестве данных.‭ ‬Находите математическое ожидание,‭ ‬дисперсию,‭ ‬среднеквадратическое отклонение данных чисел с помощью этих бесплатных арифметических онлайн-калькуляторов среднеквадратического отклонения.

Стандартное отклонение

Стандартное отклонение (англ. Standard Deviation) — простыми словами это мера того, насколько разбросан набор данных.

Вычисляя его, можно узнать, являются ли числа близкими к среднему значению или далеки от него. Если точки данных находятся далеко от среднего значения, то в наборе данных имеется большое отклонение; таким образом, чем больше разброс данных, тем выше стандартное отклонение.

Стандартное отклонение обозначается буквой σ (греческая буква сигма).

Стандартное отклонение также называется:

  • среднеквадратическое отклонение,
  • среднее квадратическое отклонение,
  • среднеквадратичное отклонение,
  • квадратичное отклонение,
  • стандартный разброс.

Использование и интерпретация величины среднеквадратического отклонения

Стандартное отклонение используется:

  • в финансах в качестве меры волатильности,
  • в социологии в опросах общественного мнения — оно помогает в расчёте погрешности.

Рассмотрим два малых предприятия, у нас есть данные о запасе какого-то товара на их складах.

День 1 День 2 День 3 День 4
Пред.А 19 21 19 21
Пред.Б 15 26 15 24

В обеих компаниях среднее количество товара составляет 20 единиц:

  • А -> (19 + 21 + 19+ 21) / 4 = 20
  • Б -> (15 + 26 + 15+ 24) / 4 = 20

Однако, глядя на цифры, можно заметить:

  • в компании A количество товара всех четырёх дней очень близко находится к этому среднему значению 20 (колеблется лишь между 19 ед. и 21 ед.),
  • в компании Б существует большая разница со средним количеством товара (колеблется между 15 ед. и 26 ед.).

Если рассчитать стандартное отклонение каждой компании, оно покажет, что

  • стандартное отклонение компании A = 1,
  • стандартное отклонение компании Б ≈ 5.

Стандартное отклонение показывает эту волатильность данных — то, с каким размахом они меняются; т.е. как сильно этот запас товара на складах компаний колеблется (поднимается и опускается).

Расчет среднеквадратичного (стандартного) отклонения

Формулы вычисления стандартного отклонения

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Где:
σ — стандартное отклонение,
xi — величина отдельного значения выборки,
μ — среднее арифметическое выборки,
n — размер выборки.
Эта формула применяется, когда анализируются все значения выборки.

стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Где:
S — стандартное отклонение,
n — размер выборки,
xi — величина отдельного значения выборки,
xср — среднее арифметическое выборки.
Эта формула применяется, когда присутствует очень большой размер выборки, поэтому на анализ обычно берётся только её часть.
Единственная разница с предыдущей формулой: “n — 1” вместо “n”, и обозначение «xср» вместо «μ».

Разница между формулами S и σ («n» и «n–1»)

Состоит в том, что мы анализируем — всю выборку или только её часть:

  • только её часть – используется формула S (с «n–1»),
  • полностью все данные – используется формула σ (с «n»).

Как рассчитать стандартное отклонение?

Пример 1 (с σ)

Рассмотрим данные о запасе какого-то товара на складах Предприятия Б.

День 1 День 2 День 3 День 4
Пред.Б 15 26 15 24

Если значений выборки немного (небольшое n, здесь он равен 4) и анализируются все значения, то применяется эта формула:

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Применяем эти шаги:

1. Найти среднее арифметическое выборки:

μ = (15 + 26 + 15+ 24) / 4 = 20

2. От каждого значения выборки отнять среднее арифметическое:

x1 — μ = 15 — 20 = -5

x2 — μ = 26 — 20 = 6

x3 — μ = 15 — 20 = -5

x4 — μ = 24 — 20 = 4

3. Каждую полученную разницу возвести в квадрат:

4. Сделать сумму полученных значений:

Σ (xi — μ)² = 25 + 36+ 25+ 16 = 102

5. Поделить на размер выборки (т.е. на n):

(Σ (xi — μ)²)/n = 102 / 4 = 25,5

6. Найти квадратный корень:

√((Σ (xi — μ)²)/n) = √ 25,5 ≈ 5,0498

Пример 2 (с S)

Задача усложняется, когда существуют сотни, тысячи или даже миллионы данных. В этом случае берётся только часть этих данных и анализируется методом выборки.

У Андрея 20 яблонь, но он посчитал яблоки только на 6 из них.

Популяция — это все 20 яблонь, а выборка — 6 яблонь, это деревья, которые Андрей посчитал.

Яблоня 1 Яблоня 2 Яблоня 3 Яблоня 4 Яблоня 5 Яблоня 6
9 2 5 4 12 7

Так как мы используем только выборку в качестве оценки всей популяции, то нужно применить эту формулу:

стандартное отклонение формула, среднее квадратичное отклонение формула, среднеквадратическое отклонение формула, среднее квадратическое отклонение формула

Математически она отличается от предыдущей формулы только тем, что от n нужно будет вычесть 1. Формально нужно будет также вместо μ (среднее арифметическое) написать X ср.

Применяем практически те же шаги:

1. Найти среднее арифметическое выборки:

Xср = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5

2. От каждого значения выборки отнять среднее арифметическое:

X1 – Xср = 9 – 6,5 = 2,5

X2 – Xср = 2 – 6,5 = –4,5

X3 – Xср = 5 – 6,5 = –1,5

X4 – Xср = 4 – 6,5 = –2,5

X5 – Xср = 12 – 6,5 = 5,5

X6 – Xср = 7 – 6,5 = 0,5

3. Каждую полученную разницу возвести в квадрат:

(X1 – Xср)² = (2,5)² = 6,25

(X2 – Xср)² = (–4,5)² = 20,25

(X3 – Xср)² = (–1,5)² = 2,25

(X4 – Xср)² = (–2,5)² = 6,25

(X5 – Xср)² = 5,5² = 30,25

(X6 – Xср)² = 0,5² = 0,25

4. Сделать сумму полученных значений:

Σ (Xi – Xср)² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5

5. Поделить на размер выборки, вычитав перед этим 1 (т.е. на n–1):

(Σ (Xi – Xср)²)/(n-1) = 65,5 / (6 – 1) = 13,1

6. Найти квадратный корень:

S = √((Σ (Xi – Xср)²)/(n–1)) = √ 13,1 ≈ 3,6193

Дисперсия и стандартное отклонение

Стандартное отклонение равно квадратному корню из дисперсии (S = √D). То есть, если у вас уже есть стандартное отклонение и нужно рассчитать дисперсию, нужно лишь возвести стандартное отклонение в квадрат (S² = D).

Дисперсия — в статистике это «среднее квадратов отклонений от среднего». Чтобы её вычислить нужно:

  1. Вычесть среднее значение из каждого числа
  2. Возвести каждый результат в квадрат (так получатся квадраты разностей)
  3. Найти среднее значение квадратов разностей.

Ещё расчёт дисперсии можно сделать по этой формуле:

Дисперсия и стандартное отклонение расчёт дисперсии формула

Где:
S² — выборочная дисперсия,
Xi — величина отдельного значения выборки,
Xср (может появляться как X̅) — среднее арифметическое выборки,
n — размер выборки.

Правило трёх сигм

Это правило гласит: вероятность того, что случайная величина отклонится от своего математического ожидания более чем на три стандартных отклонения (на три сигмы), почти равна нулю.

Правило трёх сигм

Глядя на рисунок нормального распределения случайной величины, можно понять, что в пределах:

  • одного среднеквадратического отклонения заключаются 68,26% значений (Xср ± 1σ или μ ± 1σ),
  • двух стандартных отклонений — 95,44% (Xср ± 2σ или μ ± 2σ),
  • трёх стандартных отклонений — 99,72% (Xср ± 3σ или μ ± 3σ).

Это означает, что за пределами остаются лишь 0,28% — это вероятность того, что случайная величина примет значение, которое отклоняется от среднего более чем на 3 сигмы.

Стандартное отклонение в excel

Вычисление стандартного отклонения с «n – 1» в знаменателе (случай выборки из генеральной совокупности):

1. Занесите все данные в документ Excel.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

2. Выберите поле, в котором вы хотите отобразить результат.

3. Введите в этом поле «=СТАНДОТКЛОНА(«

4. Выделите поля, где находятся данные, потом закройте скобки.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

5. Нажмите Ввод (Enter).

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

В случае если данные представляют всю генеральную совокупность (n в знаменателе), то нужно использовать функцию СТАНДОТКЛОНПА.

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Формулы вычисления стандартного отклонения sigma сигма стандартное отклонение в эксель excel

Коэффициент вариации

Коэффициент вариации — отношение стандартного отклонения к среднему значению, т.е. Cv = (S/μ) × 100% или V = (σ/X̅) × 100%.

Стандартное отклонение (Standard Deviation)

Стандартное отклонение (Standard Deviation)

Стандартное отклонение (σ, s) – это мера разброса в наборе числовых данных. Выражаясь простыми словами, насколько далеко от Cреднего арифметического (Mean) находятся точки данных. Его также можно назвать мерой центральной тенденции: чем меньше стандартное отклонение, тем более «сгруппированы» данные вокруг центра (среднего). Чем отклонение больше, тем больше разброс значений.

Стандартное отклонение в статистике

Метрика рассчитывается с помощью следующей формулы:

$$σ = \sqrt^n(x_i — \bar)^2>>, где$$
$$σ\space(малая\spaceсигма)\space–\spaceстандартное\spaceотклонение$$
$$Σ\space–\spaceсумма$$
$$x\space–\space\spaceэлемент\spaceвыборки$$
$$\bar\space–\spaceсреднее\spaceзначение\spaceвыборки$$
$$n\space–\spaceколичество\spaceэлементов\spaceв\spaceвыборке$$

Пример. Мы располагаем Выборкой (Sample) из 10 наблюдений, где указано, сколько килограммов томатов собрали дачники в этом месяце:

Средним значением выборки будет 7,7:

$$\bar = (5 + 7 + 8 + 11 + 12 + 7 + 5 + 4 + 10 + 8) / 10 = 7,7$$

Следуя формуле, вычислим квадрат разницы между i-м элементом выборки и средним значением. К примеру, для первого вхождения это будет:

$$x_i – \bar = (5 — 7,7)^2 = 7,29$$

Причина, по которой мы возводим разницы в квадрат, заключается в том, что большие отклонения от среднего как бы «наказываются» более сурово. Возведение в квадрат также приводит одинаковому учету отклонений в обоих направлениях (положительном и отрицательном), то есть расстояние от среднего значения у отрицательного и положительного числа будет рассчитано верно в обоих случаях.

Суммой значений правого столбца является число 64,1. Итак, согласно формуле стандартное отклонение будет равно:

Стандартное отклонение в Машинном обучении

Представьте, что перепись «томатного» населения приобрела более широкие масштабы, и исследователи собрали данные о целом климатическом поясе. Мало тех, кто собрал по 2 килограмма, и тех, кто собрал 50. В среднем, садоводы собирали 25 кг.

При создании модели прогнозирования урожая стандартное отклонение уточняет наши предположения с помощью следующих принципов:

  • С вероятностью 68% следующее наблюдение будет лежать в пределах одного отклонения от среднего (25 ± 6,41), то есть в диапазоне 18,59 — 31,41 кг.
  • С вероятностью 95% следующий дачник сообщит, что собрал томатов. в пределах двух стандартных отклонений от среднего значения (25 ± 2 × 6,41), то есть 12,18 – 37,82 кг.
  • С вероятностью 99% размер урожая будет лежать в пределах 3 отклонений (25 ± 3 × 6,41): 5,77 – 44,23 кг.

Библиотека Statistics

Рассчитывание стандартного отклонения выполняется мгновенно с помощью библиотеки statistics:

Стандартное отклонение

Стандартное отклонение — классический индикатор изменчивости из описательной статистики.

Выборки с разным стандартным отклонением

Стандартное отклонение, среднеквадратичное отклонение, СКО, выборочное стандартное отклонение (англ. standard deviation, STD, STDev) — очень распространенный показатель рассеяния в описательной статистике. Но, т.к. технический анализ сродни статистике, данный показатель можно (и нужно) использовать в техническом анализе для обнаружения степени рассеяния цены анализируемого инструмента во времени. Обозначается греческим символом Сигма «σ».

Спасибо Карлам Гауссу и Пирсону за то, что мы имеем возможность пользоваться стандартным отклонением.

Используя стандартное отклонение в техническом анализе, мы превращаем этот «показатель рассеяния» в «индикатор волатильности«, сохраняя смысл, но меняя термины.

Что представляет собой стандартное отклонение

Понимание сути стандартного отклонения возможно с пониманием азов описательной статистики. К примеру, мы имеем 2 выборки, у которых среднее арифметическое одинаково и равно 3. Казалось бы, одинаковое среднее делает эти две выборки одинаковыми. Ан-нет! Давайте рассмотрим возможные варианты данных для этих двух выборок:

  1. 1, 2, 3, 4, 5
  2. -235, -103, 3, 100, 250

Очевидно, что разброс (или рассеяние, или, в нашем случае, волатильность) гораздо больше во второй выборке. Следовательно, несмотря на то, что у этих двух выборок одинаковое среднее (равное 3), они совершенно разные в силу того, что у второй выборки данные беспорядочно и сильно рассеяны вокруг центра, а у первой — сконцентрированы около центра и упорядочены.

Но если нам надо быстро дать понять о таком явлении, мы не будем объяснять, как в абзаце выше, а просто скажем, что у второй выборки очень большое стандартное отклонение, а у первой — очень маленькое. Так, у второй выборки стандартное отклонение равно 186, а у первой оно равно 1,6. Разница существенная.

Стандартное отклонение в техническом анализе

Стандартное отклонение используется в техническом анализе не так часто, но оно служит отличным индикатором волатильности (изменчивости). Стандартное отклонение используется для промежуточных вычислений различных индикаторов, таких как, например, Полосы Боллинджера или Ширина Полос Боллинджера.

Но помимо промежуточных вспомогательных вычислений, стандартное отклонение вполне приемлемо для самостоятельного вычисления и применения в техническом анализе. Как отметил активный читатель нашего журнала burdock, «до сих пор не пойму, почему СКО не входит в набор стандартных индикаторов отечественных диллинговых центров«.

Действительно, стандартное отклонение может классическим и «чистым» способом измерить изменчивость инструмента. Но к сожалению, этот индикатор не так распространен в анализе ценных бумаг.

Применение стандартного отклонения

Для любого индикатора нам понадобится переменная, т.е. параметр. В данном случае нам нужен только период n, который указывает, какое количество периодов мы будем включать в вычисление стандартного отклонения.

Для вычисления, мы берем данные закрытия из n периодов назад от последней доступной цены. Т.е. если мы установили период индикатора 20 (достаточно часто используемый период),то мы берем 20 последних данных и оперируем ими для вычисления стандартного отклонения сегодня. Следовательно, для вычисления стандартного отклонения в любой момент времени k, надо взять цены закрытия всех n периодов назад от k.

Вычисление стандартного отклонения

Предупреждаю, что самостоятельное вычисление вам врядли понадобиться, т.к. основные программы обработки данных имеют встроенную функцию вычисления стандартного отклонения. Например, в Microsoft Excel эта функция называется СТАНДОТКЛОН.

Вручную вычислить стандартное отклонение не очень интересно, но полезно для опыта. Стандартное отклонение можно выразить формулой STD=√[(∑(x- x ) 2 )/n], что звучит как корень из суммы квадратов разниц между элементами выборки и средним, деленной на количество элементов в выборке.

Если количество элементов в выборке превышает 30, то знаменатель дроби под корнем принимает значение n-1. Иначе используется n.

Пошагово вычисление стандартного отклонения:

  1. вычисляем среднее арифметическое выборки данных
  2. отнимаем это среднее от каждого элемента выборки
  3. все полученные разницы возводим в квадрат
  4. суммируем все полученные квадраты
  5. делим полученную сумму на количество элементов в выборке (или на n-1, если n>30)
  6. вычисляем квадратный корень из полученного частного (именуемого дисперсией)

Для наглядности, вот пример из таблицы Excel:

В данном примере я взял краткий отрезок исторических данных цен закрытия индекса ПФТС. Для вычислений, дата не нужна, но я решил ее оставить, чтоб вы могли сверить, если хотите. Что действительно важно, это все остальное. Обратите внимание на отдельные данные под темным разделителем: «среднее» и «всего». Есть столбец с ценой закрытия, столбец с разницами данных и среднего, и квадраты этих разниц.

После вычисления квадратов, мы складываем их, полученную сумму делим на количество элементов выборки (т.к. всего элементов 24, что меньше 30) и из полученного честного вычисляем квадратный корень. Результат округляем до целого, и получаем 69.

Важно заметить, что все эти вычисления дадут нам лишь значение индикатора «стандартное отклонение» в последний день, т.е. 26.09.2008, а для каждой другой даты надо проделывать этот комплекс операций отдельно.

Прикладное значение стандартного отклонения

Напомню, что смысл стандартного отклонения заключается в выявлении степени изменчивости инструмента. Т.е. стандартное отклонение не сможет показать аналитику ничего, кроме волатильности.

Важно отметить, что элементы выборки в среднем отличается от среднего значения на ±СО. Т.е. из примера выше, цены закрытия индекса ПФТС в среднем отличаются от среднего значения на ±69.

Из примера выше, отдельно цифра 69 ничего не скажет, т.к надо ее использовать с другими значениями стандартного отклонения в другие периоды. 69 — относительно немалая волатильность, но если в другие периоды стандартное отклонение будет больше 100, то, естественно, 69 окажется умеренной изменчивостью. Т.е. «все познается в сравнении«.

Вывод

Стандартное отклонение — классический индикатор изменчивости из описательной статистики. Он поможет увидеть, как изменяется волатильность инструмента во времени.

Читайте также

комментария 23

  • Читатель (09.10.09)

Я уже 4 дня по формулам в интрнете пытаюсь рассчитать СО и вообще понять ЧЕ ЭТО ТАКОЕ.
Вы себе не представляете каким счастливым вы меня сделали!
Статья очень доходчиво написана. Тут и пример есть и программа в Экселе и минимум текста, но за-то каждое слово ценно. СПАСИБО.

Да!! Согласен с Читателем!Статья действительно отличная, как и все остальные на этом сайте!
Спасибо!

В разделе «Вычисление стандартного отклонения» есть такая формулировка:
«Стандартное отклонение можно выразить формулой STD=√[(∑(x-x)2)/n], что звучит как корень из суммы разниц между элементами выборки и средним, деленной на количество элементов в выборке».
Следует читать:
«Стандартное отклонение можно выразить формулой STD=√[(∑(x-x)2)/n], что звучит как корень из суммы квадратов разниц между элементами выборки и средним, деленной на количество элементов в выборке».
Если оценивать материал в целом, то подан он очень добротно (доходчиво).

Вам не кажется, что тут закралась некоторая ошибка?
если для выборки 1,2,3,4,5 брать знаменатель n (=5), то среднеквадратичное отклонение будет 1.5, а не 1.6 как пишется в статье.
По другим источникам, получается наоборот — при малом количестве выборок берется n-1, при большом берется любое — либо n, либо n-1.
Более того этим и отличаются "стандартное отклонение" (n-1) от "среднеквадратичного" (n)

Друзья,спасибо Вам огромное,ВЫ оч оч оч оч оч помогли,я как начинающий пытался долго понять,что это такое и зачем нужно,но в учебниках все одна вода,спасибо за ясность,которую вы внесли в подобного рода коллапс=)
Респект=)

Статья понравилась, иногда даже слишком подробная.

Но вкралась ошибочка:
«Важно отметить, что элементы выборки в среднем отличается от среднего значения на ±СО»

Элементы выборки отличаются в среднем на sum(abs(отклонений от среднего))/n (В excel — СРОТКЛ()), а Стандартное отклонение, как показал мой скромный опыт (могу ошибаться) — более отзывчивый к изменчивости/волатильности индикатор.

n берется если вы вычисляете СКО для генеральной совокупности, если вы имеете дело с выборкой, то берется n-1. А СКО и СО ничем, кроме названия друг от друга не отличаются..

Надо отдать должное автору, статья замечательная, лучшая из всех, с которыми мне приходилось знакомиться, понятная даже школьникам. После таких статей начитаешь любить математику и статистику. На мой взгляд, статья будет полнее, если привести простые и яркие примерами, где это можно применить.

Согласен с Сомневающимся в части 1,5 а не 1,6. Если отбросить данные извне формулы СО и дисперсии, а рассуждать с точки зрения простой логики. Тогда среднее отклонение от среднеарифметического вычисляется как среднеарифметическое модулей разностей отклонений от среднеарифметического, т.е. (мод(3-2)+мод(3-1)+мод(3-4)+ мод(3-5))/4 = 1,5. Что и понятно логически — лежит ровно посередине между 4 и 5 или 1 и 2. И в этом есть геометрический смысл. А по формулам выходит 1,6. Понять не могу. Может, кто-нить просветит?

Отличная статья. Спасибо автору.
А что касается n, то, похоже, действительно неточность. Т.к. при больших n вычитание единицы будет оказывать весьма незначительное воздействие на результат и им можно пренебречь. Т.о. при малых n следует использовать n-1, а при больших — единицу можно не вычитать.

Это просто потрясающая статья. Я по-моему весь интернет перелопатила, чтобы хоть что-нибудь понять.
Огромное спасибо автору.
Было бы по больше нормальных, коротких и понятных статей)))

спасибо Вам, Человек. огромный респектище, даже мне-имбецилу стало понятно. и пох, что мой коммент Вам не всрался, пардон за мой французский

….присоединяюсь к благодарностям, только что очень выручил. Только с этого сайта скатала объяснения нормальные.

Статья прекрасная! Долго не могла найти такого доходчивого и понятного описания. То, что нужно! Спасибо большое автору!

Нормально! Я все поняла!
Спасибо.

Очень доходчивая статья, прочитал на одном дыхании) Все просто и ясно изложена, согласен с Игорем, после прочтения статьи начинаешь больше интересоваться статистикой. Добавляю сайт в закладки. Спасибо!

Мне не совсем понятно утверждение: «элементы выборки в среднем отличается от среднего значения на ±СО.» Насколько я помню, значение искомой величины есть [x]± t*CO/(корень из n), где t-коэф.Стьюдента, n — количество элементов.

например применяется в xyz анализе, для определения классов товаров и для определения по ним страхового запаса ввиде прибавления СКО к среднему значению в условиях неопределенности

спасибо, очень доступное раскрытие сложного математического термина, если это возможно — посмотрите на стандартное отклонение в программе Wealth-Lab Developer 3.01. Написал алгоритм, хочу заавтоматить, но не могу нормальное ТЗ для программиста составить, споткнулся на формуле STDDEV, заранее благодарен.

По приведенной формуле нерационально рассчитывать СО, поскольку она требует два прохода (расчет среднего и дисперсии)формулу можно изменить и считать за один проход (сумму и сумму квадратов). Формулу не привожу, боюсь налажал с n. Надо в Нете поискать.

Отличная статья, но осталось непонятным, как рассчитывается канал Стандарное отклонение в терминале Метатрейдер 4

Спасибо автору статьи. Дело в том что я преподаю Excel для продвинутых пользователей и как раз собирался дат лекцию по стандартному отклонению. Так как моя специальность не статистик нуждался в таком доходчивом объяснении для для таких чайников как я. Отзыв оставляю для того чтобы автор продолжал писать такие статьи.
Привет из Баку!

С уважаем — Самир

Глубокоуважаемый автор, спасибо за замечательную статью, но, может быть я ошибаюсь, но в вашем алгоритме пошагового вычисления закралась ошибка.
Пошагово вычисление стандартного отклонения сначала нужно суммировать значения, затем возводить в квадрат, т.к. квадрат даже отрицательного числа будет положительным. В этом случае дисперсное значение будет неверным. Жду ответа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *